
Search by keywords or author
Journals >Journal of Inorganic Materials
Export citation format
Zhipeng WEN, Yi WEI, Xianghua HOU, Jiawen GUO... and Lian WU|Show fewer author(s)
Bentonite is an abundant, cheap and readily available natural clay mineral, with montmorillonite (MMT) as its main mineral composition. MMT possesses excellent ion exchange, adsorption and ion transport properties due to its unique two-dimensional layered nanostructure, abundant pore structure, and high specific surfacBentonite is an abundant, cheap and readily available natural clay mineral, with montmorillonite (MMT) as its main mineral composition. MMT possesses excellent ion exchange, adsorption and ion transport properties due to its unique two-dimensional layered nanostructure, abundant pore structure, and high specific surface area. Moreover, it also possesses excellent thermal, chemical and mechanical stabilities. In recent years, MMT has attracted extensive attention in the field of electrochemical energy storage owing to the above excellent characteristics, especially the inherent fast ion (Li+, Na+, Zn2+, etc.) transport properties. Thus, the bentonite-based functional materials have been widely applied to the key components (i.e., electrodes, polymer electrolytes, and separators) of electrochemical energy storage devices and show good application prospects. In this review, the structure and physicochemical properties of bentonite are firstly introduced, and then the research progress of bentonite-based functional materials in the field of electrochemical energy storage, mainly including metal anodes, lithium-sulfur battery cathodes, solid/gel polymer electrolytes, and polymer separators, is comprehensively summarized. On the basis of these facts, the ion transport promotion mechanism of bentonite-based functional materials during the process of electrochemical energy storage is elaborated. Finally, the current problems and challenges faced by application of bentonite-based materials in electrochemical energy storage devices are pondered, and the possible future research directions are prospected. This review provides useful guidance for the design and development of bentonite-based electrochemical energy storage functional materials..
Journal of Inorganic Materials
- Publication Date: Aug. 19, 2024
- Vol. 39, Issue 12, 1301 (2024)
Zhen TIAN, Quanwei JIANG, Jianbo LI, Lifeng YU... and Tongmin WANG|Show fewer author(s)
As a typical multi-layered compound thermoelectric (TE) material, BiSbSe1.50Te1.50, can be utilized to fabricate p-n junctions with the same chemical composition. It has great potential in the development and design of high-performance TE devices due to its ability to avoid lattice mismatch incompatibility and harmful As a typical multi-layered compound thermoelectric (TE) material, BiSbSe1.50Te1.50, can be utilized to fabricate p-n junctions with the same chemical composition. It has great potential in the development and design of high-performance TE devices due to its ability to avoid lattice mismatch incompatibility and harmful band misalignment. However, the TE performance of n-type BiSbSe1.50Te1.50 is limited due to poor electrical transport properties, which hinders its further application in TE devices. Therefore, it is of great significance to improve the TE performance by enhancing the electrical transport properties while maintaining low thermal conductivity. In this work, a series of n-type BiSbSe1.50Te1.50 hot deformation samples were prepared by solid-state reaction combined with hot pressed sintering. It is found that the preferred orientation and nanoscale lamellar structures with large surface areas form in hot-deformed samples. The donor-like effect elevates the carrier concentration, while these lamellar structures facilitate higher carrier mobility by providing expressways for carriers, giving rise to the enhanced electrical conductivity. Additionally, various and abundant multiscale defects are introduced into samples, evoking strong phonon scattering with different frequencies and thus lowering the thermal conductivity. The electrical and thermal transport properties have been synergistically optimized by hot deformation, realizing the improvement of TE properties for n-type BiSbSe1.50Te1.50. As a result, a peak thermoelectric figure of merit (ZT) of 0.50 at 500 K is achieved for the hot-deformed sample, which increased ~138% compared to the undeformed sample (0.21). This work establishes a foundation for further advancement of the preparation for BiSbSe1.50Te1.50 TE devices with high conversion efficiency and homogeneous structure..
Journal of Inorganic Materials
- Publication Date: Jul. 03, 2024
- Vol. 39, Issue 12, 1316 (2024)
Botao ZHANG, Tingting SUN, Lianjun WANG, and Wan JIANG
Flexible thermoelectric devices, capable of generating electricity from the slight temperature difference between the human body and the environment, demonstrate significant potential for continuous power supply in wearable devices. However, the poor thermoelectric performance still limits their widespread application.Flexible thermoelectric devices, capable of generating electricity from the slight temperature difference between the human body and the environment, demonstrate significant potential for continuous power supply in wearable devices. However, the poor thermoelectric performance still limits their widespread application. This study reports a method for fabricating high-performance flexible thermoelectric thin films using inkjet printing. AgCuTe nanowires prepared by a chemical transfer method were dispersed in ethanol to form the ink with no significant sedimentation, which could be stably and continuously sprayed to print p-type thermoelectric films on polyimide substrates. Dense thermoelectric films were then obtained through thermal treatment by a spark plasma sintering furnace, and the effect of sintering temperature on thermoelectric properties was studied. The results showed that the film sintered at a pressure of 10 MPa and a temperature of 400 ℃ for 15 min possessed a room temperature power factor of 432 µW·m-1·K-2, which is 182% higher than that of inkjet-printed p-type Bi2Te3 films (a room temperature power factor of 153 µW·m-1·K-2) reported in literature. This advancement further expands the application of inkjet printing in the field of flexible thermoelectrics and provides more possibilities for the fabrication of a new generation of high-performance flexible thermoelectric devices..
Journal of Inorganic Materials
- Publication Date: Jun. 24, 2024
- Vol. 39, Issue 12, 1325 (2024)
Jianfeng KONG, Jiecheng HUANG, Zhaolin LIU, Cunsheng LIN, and Zhiyu WANG
Compared to Li-ion batteries, Na-ion batteries hold significant advantages and market value for achieving low-cost and large-scale energy storage, thanks to the utilization of cheap and abundant Na resources. However, the use of highly flammable liquid electrolytes with leaky risk raises safety concerns for conventionaCompared to Li-ion batteries, Na-ion batteries hold significant advantages and market value for achieving low-cost and large-scale energy storage, thanks to the utilization of cheap and abundant Na resources. However, the use of highly flammable liquid electrolytes with leaky risk raises safety concerns for conventional Na-ion batteries under abuse conditions such as mechanical damage, short-circuiting, and thermal runaway. Limited electrochemical stability of liquid electrolytes also hinders further enhancement of the performance of Na-ion batteries for practical use. This study reports a facile way for the preparation of high-performance gel polymer electrolyte (GPE) by thermal-driven radical in-situ polymerization of dipentaerythritol penta-/hexa-acrylat (DPEPA). This GPE exhibits an ionic conductivity of 1.97 mS·cm-1, a Na+ transference number of 0.66, and a broad electrochemical stability window. The DPEPA displays a lower lowest unoccupied molecular orbit (LUMO) energy level than that of ethylene carbonate (EC) and diethyl carbonate (DEC) solvents, allowing for its preferential decomposition alongside NaPF6 on the anode surface. This leads to a stable organic-inorganic composite film of solid-state electrolyte interphase, inhibiting the decomposition of electrolyte solvents on the anode surface. The quasi-solid-state Na-ion battery employing Na(Ni 1/3Fe1/3Mn 1/3)O2 (NFM) cathode and hard carbon (HC) anode in this GPE exhibits a high capacity retention rate of 92% after 300 stable cycles at a current density of 120 mA·g-1, while achieving the specific capacities of 99-120 mAh·g-1 within a wide temperature range of 20-80 ℃. In-situ X-ray diffractometer analysis reveals the highly reversible structural evolution of the NFM cathode during Na storage and the “adsorption-pore-filling” mechanism of Na+ storage in the HC anode. All data in this research demonstrates that introducing polymers with low LUMO energy levels proves an effective approach to enhance the electrochemical stability of solid-state Na-ion batteries while improving cell safety..
Journal of Inorganic Materials
- Publication Date: Jun. 24, 2024
- Vol. 39, Issue 12, 1331 (2024)
Yu WANG, Hao XIONG, Xiaokun HUANG, Linqin JIANG... and Aijun YANG|Show fewer author(s)
In the preparation of Sn-Pb alloyed perovskite, a large amount of stannous fluoride (SnF2) additive is often employed to inhibit the oxidation of Sn2+ ions. However, excessive SnF2 deteriorates quality of the film, photoelectric conversion efficiency (PCE) and stability of the device. Therefore, the development of new In the preparation of Sn-Pb alloyed perovskite, a large amount of stannous fluoride (SnF2) additive is often employed to inhibit the oxidation of Sn2+ ions. However, excessive SnF2 deteriorates quality of the film, photoelectric conversion efficiency (PCE) and stability of the device. Therefore, the development of new antioxidants at low doses is essential to achieve high-performance Sn-Pb alloyed perovskite solar cells. In this study, a two-step process was used to prepare Sn-Pb alloyed perovskite film. In the first step, low-dose stannous iso-octanoate (SnOct2) was introduced to replace SnF2 to inhibit the oxidation of Sn2+. This study showed that the additive could improve the crystallization quality of the film, and the average grain size of the film with SnOct2 could reach 850 nm while the amount of grain boundaries was reduced. The film with the addition of SnOct2 still contained 93.5% Sn2+ after storage for 7 d in the glove box. And due to the excellent oxidation resistance of SnOct2, the device with the additional SnOct2 had a lower defect state density, which was reduced from 7.20×1015 to 4.74×1015 cm-3, inhibiting the non-radiative recombination. In addition, SnOct2 improved the surface energy levels of perovskite films. Finally, PCE of Sn-Pb alloyed perovskite cell supplemented with 0.030 mmol SnOct2 reached 17.25%, superior to that of device supplemented with 0.10 mmol SnF2 (11.63%). After storage in nitrogen for 50 d, more than 70% of initial PCE was still preserved..
Journal of Inorganic Materials
- Publication Date: Jul. 26, 2024
- Vol. 39, Issue 12, 1339 (2024)
Wenyan XIAO, Yan FU, Shubin YANG, Jie ZHU... and Qian ZHANG|Show fewer author(s)
To solve the existing energy crisis and achieve continuous seawater electrolysis, it is necessary to design efficient electrocatalysts to deal with the problems of slow anodic oxygen evolution and chloride ion (Cl-) corrosion. In this study, a unique nanostructural modified Ce-FeHPi/NF electrode was prepared by a one-sTo solve the existing energy crisis and achieve continuous seawater electrolysis, it is necessary to design efficient electrocatalysts to deal with the problems of slow anodic oxygen evolution and chloride ion (Cl-) corrosion. In this study, a unique nanostructural modified Ce-FeHPi/NF electrode was prepared by a one-step hydrothermal method on a nickel foam (NF) skeleton. The experimental results show that Ce doping regulates the surface morphology of FeHPi/NF, forming amorphous nanospheres, which not only enables the catalytic layer to grow into a compact nanostructure, but also greatly increases the active surface area of the electrode, significantly improving the electrocatalytic activity. In addition, the presence of phosphoric acid group can effectively repel Cl- on surface of the electrode, which enhances its corrosion resistance, and stabilizes it in seawater for a long time. The 10%Ce-FeHPi/NF electrode in alkaline simulated seawater (1 mol·L-1 KOH + 0.5 mol·L-1 NaCl) electrolyte requires only a low overpotential of 296 mV to reach a current density of 100 mA·cm-2. In 1 mol·L-1 KOH + 1 mol·L-1 NaCl, the 10%Ce-FeHPi/NF electrode runs stably for more than 130 h at a constant potential of 1.774 V (vs. RHE). Therefore, the modified nanostructured material prepared in this study can effectively improve the oxygen evolution activity of electrodes, and provide a new way for the development of seawater electrolytic anode catalytic materials..
Journal of Inorganic Materials
- Publication Date: Sep. 02, 2024
- Vol. 39, Issue 12, 1348 (2024)
Xiaoyang GUO, Xiaolin ZHANG, Yan JIANG, Yuan TIAN, and Zhi GENG
In order to improve the ablation resistance of carbon-based materials in elevated-temperature and oxygenated environments, Ti-doped HfB2-SiC and ZrB2-SiC composite coatings were prepared on the surface of graphite via a hybrid method involving slurry dipping and reactive infiltration. Phase compositions, microstructureIn order to improve the ablation resistance of carbon-based materials in elevated-temperature and oxygenated environments, Ti-doped HfB2-SiC and ZrB2-SiC composite coatings were prepared on the surface of graphite via a hybrid method involving slurry dipping and reactive infiltration. Phase compositions, microstructures, and element distributions of the composite coatings were studied, and anti-ablation ability of the coating was evaluated at 2300 ℃. Results show that structures of Ti-doped Hf(Zr)B2-SiC composite coatings are very dense after silicon infiltration. Both HfTiB2 and ZrTiB2 ceramic phases are embedded in the coatings, which exhibit no defects and establish robust bonds with the graphite substrates. Residual silicon continuously distributes around Hf(Zr)B2 and SiC particles. After undergoing ablation at 2300 ℃ for 480 s, the mass ablation rates of HfTiB2-SiC and ZrTiB2-SiC composite coating samples are -2.71×10-3 and -4.20×10-1 mg/s, respectively, indicating a slight weight gain. The corresponding line ablation rates are 1.88×10-4 and 3.70×10-4 μm/s, respectively. Following ablation, a Hf-Ti-Si-O multiphase oxide layer composed of HfTiO4-HfO2 as the skeleton and TiO2-SiO2 as the filling phase forms on the surface of HfTiB2-SiC coating. In contrast, a Zr-Ti-Si-O multiphase oxide layer with some micropores, comprising embedded ZrTiO4 and ZrO2 phases and a semi-continuous SiO2 glass phase, develops on the ablative surface of ZrTiB2-SiC coating. High-melting-point phases, such as HfTiO4, HfO2, ZrTiO4, and ZrO2, effectively counteract high-temperature flame erosion. Meanwhile, TiO2 and SiO2, possessing high-temperature fluidity, can seal the pore defects generated by erosion and thereby preventing oxygen from diffusing into the coatings and substrates. Therefore, the synergy between high-temperature skeletons and filling phases significantly enhances the anti-ablation protection of coatings..
Journal of Inorganic Materials
- Publication Date: Jul. 16, 2024
- Vol. 39, Issue 12, 1357 (2024)
Bojie YOU, Bo LI, Xuqin LI, Xuehan MA... and Laifei CHENG|Show fewer author(s)
Degradation of SiCf/SiC composites in-plane shear performance after thermal shock represents a significant challenge for the development of hot-end components in aero-engines. In this study, thermal shock performance of 2D SiCf/SiC was evaluated by using precision temperature-controlled thermal shock equipment, and corDegradation of SiCf/SiC composites in-plane shear performance after thermal shock represents a significant challenge for the development of hot-end components in aero-engines. In this study, thermal shock performance of 2D SiCf/SiC was evaluated by using precision temperature-controlled thermal shock equipment, and correlation between thermal shock and in-plane shear performance was established. The results showed that borosilicate glass (BSG) coating caused SiC matrix forming BSG bubbles and oxidation, while BN interfacial debonding worsened with increasing number of thermal shocks. However, the thermal shock did not affect matrix cracking and fiber bridging. Furthermore, the in-plane shear stress-strain curve maintained bilinear trend. The degradation of the in-plane shear mechanism was attributed to the thermal expansion mismatch and the oxidation of SiC matrix. The in-plane shear modulus decreased from 78.5 to 63.6 GPa, the in-plane proportional limit stress decreased from 128.9 to 99.3 MPa, and the in-plane shear stress decreased from 205.8 to 187.3 MPa. According to the in-plane shear mixing rules, the degradation of shear modulus was caused by increased interface debonding. Combined with matrix cracking stress equation, this indicated that volume fraction decreased due to SiC matrix oxidation, resulting in degradation of proportional limit stress. Based on modified rigid body sliding model, using fiber step spacing could predict the degradation of in-plane shear strength after thermal shock, with the error between the theoretical calculation results and the actual values less than 20%..
Journal of Inorganic Materials
- Publication Date: Aug. 19, 2024
- Vol. 39, Issue 12, 1367 (2024)
Yanzi GOU, Weifeng KANG, and Qingyu ZHANG
Due to high tensile strength, excellent high-temperature and oxidation resistance, SiC fibers could be applied in many important fields such as aerospace and high-tech equipment. However, the current preparation temperature of domestically produced titanium-containing SiC fibers is relatively low, while the fibers are Due to high tensile strength, excellent high-temperature and oxidation resistance, SiC fibers could be applied in many important fields such as aerospace and high-tech equipment. However, the current preparation temperature of domestically produced titanium-containing SiC fibers is relatively low, while the fibers are still full of excess oxygen and free carbon, which seriously affects their high-temperature resistance. In this work, the polytitanocarbosilane (PTCS) precursor was synthesized by using low-softening-point polycarbosilane (LPCS) and tetrabutyl titanate (Ti(OBu)4). Mass fraction of titaniumin in the precursor was in the range of 0.36%-1.81%. The nearly stoichiometric polycrystalline SiC(Ti) fibers were successfully prepared through PTCS melt spinning, air curing, pyrolysis, and high-temperature sintering. Mass fractions of carbon and oxygen in SiC(Ti) fibers were 30.45% and <1.0%, respectively, with a C/Si ratio of approximately 1.05 and β-SiC grain size of 100-200 nm. The titanium element in SiC(Ti) fibers mainly existed in the form of TiC phase, which was beneficial to densification of the fibers during the sintering process. The SiC(Ti) fibers showed smooth and dense surface, exhibiting obvious transgranular fracture. Average tensile strength of the SiC(Ti) fibers was 2.04 GPa, and elastic modulus was 308 GPa. All results of this work provide important reference for the development of high-performance continuous SiC fibers..
Journal of Inorganic Materials
- Publication Date: Jul. 03, 2024
- Vol. 39, Issue 12, 1377 (2024)
Xianke LI, Chaoyi ZHANG, Lin HUANG, Peng SUN... and Huili TANG|Show fewer author(s)
β-Ga2O3 is a novel wide bandgap semiconductor material with excellent performance, which has great potential applications in high power electronic devices and deep ultraviolet detectors. By doping with In3+ ions, the bandgap and optical properties of β-Ga2O3 can be adjusted, further expanding its application range. In β-Ga2O3 is a novel wide bandgap semiconductor material with excellent performance, which has great potential applications in high power electronic devices and deep ultraviolet detectors. By doping with In3+ ions, the bandgap and optical properties of β-Ga2O3 can be adjusted, further expanding its application range. In this study, β-Ga2O3:9%In and β-Ga2O3:15%In single crystals are prepared using high-purity Ga2O3 and In2O3 as raw materials by the optical floating zone method. When the growth rate is 5 mm/h, the crystals exhibit a phenomenon of transparency loss. Observation under an optical microscope reveals the presence of numerous bubble defects in the crystals, which mainly appearing strip-like and spherical shape. Length of the strip-like bubbles ranges from 50 to 200 μm and extends along the [010] crystal direction. Observation under a scanning electron microscope reveals uniform elemental distribution around the bubbles, with no evidence of impurity element accumulation. These findings suggest that the formation of defects is related to the high-temperature decomposition of In2O3, where the generated gas is not timely discharged, entering the crystal interior with the crystallization of the melt to form bubbles. After optimizing the crystal growth process, the problem of opacity caused by bubble defects is effectively resolved, resulting in transparent β-Ga2O3:9%In single crystal with a full width at half maximum of the rocking curve as low as 44 arcsec and significantly improved crystalline quality. This study provides a solution for growing high-quality β-Ga2O3:In bulk single crystal, laying a foundation for a deeper understanding of its optoelectronic properties..
Journal of Inorganic Materials
- Publication Date: Jun. 24, 2024
- Vol. 39, Issue 12, 1384 (2024)
Xingzhe FENG, Dongyun MA, and Jinmin WANG
Electrochromic materials with dynamic color change and optical modulation have potential applications in the fields of automotive anti-glare mirror, smart window, low-power display, and electronic paper, attracting worldwide attention. NiO and MnO2 are typical anodic coloration materials with a comfortable neutral toneElectrochromic materials with dynamic color change and optical modulation have potential applications in the fields of automotive anti-glare mirror, smart window, low-power display, and electronic paper, attracting worldwide attention. NiO and MnO2 are typical anodic coloration materials with a comfortable neutral tone. However, the low transmittance of single NiO or MnO2 films in bleaching states leads to small optical modulation. Herein, a porous nickel-manganese layered double hydroxide (NiMn-LDH) film with neutral color for visible electrochromic application was prepared. The NiMn-LDH films were grown directly on fluorine-doped tin oxide (FTO) conductive glass substrates by a one-step solvothermal method using NiCl2· 6H2O and MnSO4· H2O as the raw materials. The crystalline phase and micromorphology of the as-grown NiMn-LDH films were characterized and the electrochromic and electrochemical performances were also investigated. The results indicate that the film grown by solvothermal method is composed of NiMn-LDH nanosheets with porous surface morphology, leading to a large optical modulation of 61.9% at 550 nm. The coloration and bleaching time are calculated to be 15.8 and 13.2 s, respectively. A high coloration efficiency of 63.1 cm2· C-1 is also achieved for the as-grown NiMn-LDH nanosheet film. Meanwhile, the NiMn-LDH film electrode demonstrates good cycle stability, retaining 87.0% of its maximum optical modulation after 160 cycles. Furthermore, the NiMn-LDH film electrode delivers an area capacitance of 10.0 mF· cm-2 at a current density of 0.1 mA· cm-2. These results consolidate that the as-prepared NiMn-LDH film electrode is a promising candidate for both electrochromic and energy-storage applications..
Journal of Inorganic Materials
- Publication Date: May. 31, 2024
- Vol. 39, Issue 12, 1391 (2024)
Suolan LIU, Fuyuan LUAN, Zihua WU, Chunhui SHOU... and Songwang YANG|Show fewer author(s)
Significant progress has recently been made in enhancing the power conversion efficiency (PCE) of perovskite solar cells (PSCs). The electron transport layer (ETL), as an essential component of PSCs, significantly influences the performance of devices. Traditional spin-coating method for preparing the ETL fails to fullSignificant progress has recently been made in enhancing the power conversion efficiency (PCE) of perovskite solar cells (PSCs). The electron transport layer (ETL), as an essential component of PSCs, significantly influences the performance of devices. Traditional spin-coating method for preparing the ETL fails to fully cover the cusp of FTO transparent conductive glass substrate, leading to direct contact between perovskite film and FTO substrate, which induces charge recombination and reduces the performance of PSCs. To address this issue, an in-situ growth method was proposed to prepare conformal SnO2 films on FTO glass substrates in this study. The resulting SnO2 films are not only dense and uniform, fully covering the cusp of the FTO glass substrates and reducing the contact area between the FTO substrates and the perovskite films, but also facilitating the formation of perovskite films with large grain sizes. Moreover, the conformal SnO2 films can improve the charge extraction at the SnO2/perovskite interface, reduce the trap density and trap-assisted recombination in PSCs, and thus enhance the PCE of PSCs. Through comparative experiments, it is found that the PSCs with in-situ grown SnO2 films show an improved PCE of 21.97%, which significantly increased compared to that with spin-coated SnO2 films (20.93%). All above data demonstrate that the as-prepared SnO2 film can serve as an ideal ETL. It is worth mentioning that this method avoids the use of corrosive hydrochloric acid and toxic thioglycolic acid, and it can also be extended to ITO flexible transparent conductive substrates in the future..
Journal of Inorganic Materials
- Publication Date: Jul. 16, 2024
- Vol. 39, Issue 12, 1397 (2024)
Jingyu ZHOU, Xingyu LI, Xiaolin ZHAO, Youwei WANG... and Jianjun LIU|Show fewer author(s)
Sodium-ion batteries are economical and environmentally sustainable energy storage batteries. Among them, β-NaMnO2, a promising sodium-ion cathode material, is a manganese-based oxide with a corrugated laminar structure, which has attracted significant attention due to its structural robustness and relatively high specSodium-ion batteries are economical and environmentally sustainable energy storage batteries. Among them, β-NaMnO2, a promising sodium-ion cathode material, is a manganese-based oxide with a corrugated laminar structure, which has attracted significant attention due to its structural robustness and relatively high specific capacity. However, it has short cycle life and poor rate capability. To address these issues, Ti atoms, known for enhancing structural stability, and Cu atoms, which facilitate desodiation, were doped into β-NaMnO2 by first-principles calculation and crystal orbital Hamilton population (COHP) analysis. β-NaMn0.8Ti0.1Cu0.1O2 exhibits a notable increase in reversible specific capacity and remarkable rate properties. Operating at a current density of 0.2C (1C = 219 mA·g-1) and within a voltage range of 1.8-4.0 V, the modified material delivers an initial discharge capacity of 132 mAh·g-1. After charge/discharge testing at current densities of 0.2C, 0.5C, 1C, 3C, and 0.2C, the material still maintains a capacity of 110 mAh·g-1. The doping of Ti atoms slows down the changes in the crystal structure, resulting in only minimal variation in the lattice constant c/a during the desodiation process. Mn and Cu engage in reversible redox reactions at voltages below 3.0 V and around 3.5 V, respectively. The extended plateau observed in the discharge curve below 3.0 V signifies that Mn significantly contributes to the overall battery capacity. This study provides insights into modifying β-NaMnO2 as a cathode material, offering experimental evidence and theoretical guidance for enhancing battery performance in Na-ion batteries..
Journal of Inorganic Materials
- Publication Date: Jul. 16, 2024
- Vol. 39, Issue 12, 1404 (2024)