Search by keywords or author
Journals >Opto-Electronic Advances
Export citation format
Contents
Original Article
Acoustic wave detection of laser shock peening
, , , , , and
In order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoustic emission sensor at a defined position is used to collect the acoustic wave signals that propagate inIn order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoustic emission sensor at a defined position is used to collect the acoustic wave signals that propagate in the air. The acoustic wave signal is sampled, stored, digitally filtered and analyzed by the online laser shock peening detection system. Then the system gets the acoustic wave signal energy to measure the quality of the laser shock peening by establishing the correspondence between the acoustic wave signal energy and the laser pulse energy. The surface residual stresses of the samples are measured by X-ray stress analysis instrument to verify the reliability. The results show that both the surface residual stress and acoustic wave signal energy are increased with the laser pulse energy, and their growth trends are consistent. Finally, the empirical formula between the surface residual stress and the acoustic wave signal energy is established by the cubic equation fitting, which will provide a theoretical basis for the real-time online detection of laser shock peening..
Opto-Electronic Advances
- Publication Date: Jan. 10, 2019
- Vol. 1, Issue 9, 180016 (2018)
Review
Sensing and lasing applications of whispering gallery mode microresonators
Yu Zheng, Zhifang Wu, Perry Ping Shum, Zhilin Xu, Gerd Keiser, Georges Humbert, Hailiang Zhang, Shuwen Zeng, and Xuan Quyen Dinh
Optical whispering gallery mode (WGM) microresonators have attracted great attention due to their remarkable properties such as extremely high quality factor, small mode volume, tight confinement of modes, and strong evanescent field. All these properties of WGM microresonators have ensured their great potentials for aOptical whispering gallery mode (WGM) microresonators have attracted great attention due to their remarkable properties such as extremely high quality factor, small mode volume, tight confinement of modes, and strong evanescent field. All these properties of WGM microresonators have ensured their great potentials for applications, such as physical sensors, bio/chemical sensors and microlasers. In this mini-review, the key parameters and coupling conditions of WGM microresonators are firstly introduced. The geometries of WGM optical microcavities are presented based on their fabrication methods. This is followed by the discussion on the state-of-the-art applications of WGM microresonators in sensors and microlasers..
Opto-Electronic Advances
- Publication Date: Jan. 10, 2019
- Vol. 1, Issue 9, 180015 (2018)