
Supporting Information

Supporting Information for “Pattern self-referenced single-pixel computational
holographic imaging ”

Wenjing Zhaoa, #, Zefang Gaoa, #, Zhiheng Dua,, Aiping Zhaia, Dong Wanga, b, *

a. College of Physics and Optoelectronics, Taiyuan University of Technology, No. 79 West Main Street, Yingze,
030024, China
b. Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, and Shanxi
Province, Taiyuan University of Technology, No. 79 West Main Street, Yingze, 030024, China
* To whom correspondence should be addressed:
wangdong@tyut.edu.cn

Supplementary Section 1: Mathematical derivation of off-axis-based PSSCH
The modulation basis employed to spatially sample the target wavefront can be a random basis or

orthogonal bases like Hadamard basis, Fourier basis, discrete cosine transform (DCT) basis, and so on.

The sampling patterns ( )nP r ( [1, ]n N ) have a spatial resolution N N . An oblique phase

grating ( ) exp( ( ))G r i r
 

is designed to introduce the necessary phase difference for the off-axis

interference, where i is the imaginary unit, and ( )r 
is the oblique phase. Then, the encoded

self-referenced patterns ( ) ( ) ( )n nE r P r G r 
  

are obtained by superposing sampling patterns with

oblique phase grating. Here, each encoded self-referenced pattern is not only utilized as the spatial

sampling pattern but also used to introduce the phase difference for off-axis interference. After the

target wavefront ( ) ( ) exp( ( ))O r U r iV r
  

is modulated by an encoded pattern, the off-axis interference

intensity is collected by a lens and detected by a single-pixel detector, which can be expressed as
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where FFT{} represents a two-dimensional Fourier transform. r represents the spatial coordinate

vector, w is the transform domain coordinate vector, and 0w  denotes taking the zero frequency

component. 2( ) ( )n nS P r O r d r 
  

and ( ) 2
1 ( ) i rC O r e d r 

 
. Although the oblique phase is related

to the spatial coordinate vector r , it is known and fixed, making 1C can be considered to be a

complex constant. Thus, ny can also be expressed as
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where,
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nS
I and CI represent autocorrelation,

nACI is the complex conjugate cross-correlation term. The final

off-axis hologram can be reconstructed via the second-order correlation (SOC) algorithm, which can be

expressed as
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Then, according to the Fourier fringe analysis (FFA), the spectrum of the off-axis interferogram
can be obtained following the Fourier transform, subsequently, only the first-order component in the
Fourier spectrum is extracted and translated to the center of the Fourier spectrum. Finally, the target
wavefront can be reconstructed by conducting the inverse Fourier transform using the extracted Fourier
spectrum.

Supplementary Section 2: Mathematical derivation of phase-shifting-based PSSCH

The sampling patterns ( )nP r ( ],1[ Nn ) have a spatial resolution N N . To achieve the required

phase-shifting interference, four steps of phase-shiftings, denoted as iR e 
  ( 0, / 2,  

and 3 / 2 ), are encoded into the sampling patterns and thus the self-referenced patterns

( , ( ) ( )n nE r P r R  
 

) can be obtained. As such, each encoded pattern can be not only utilized to

spatially sample the target wavefront but also used to introduce the necessary four-step phase-shiftings.

Then, the wavefront of the target object ( ) ( ) exp( ( ))O r U r iV r
  

is modulated by the encoded patterns,

and the phase-shifting interference intensity detected by the single-pixel detector can be expressed as

(S4)
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where 2( ) ( )n nS P r O r d r 
  

and 2
2 3( ) iC O r d r C e  

 
, thus
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The detected intensity values corresponding to the four-step phase-shiftings can be,
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The corresponding spectral coefficient obtained can be,
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The target wavefront can be reconstructed using the SOC algorithm,
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Supplementary Section 3: Simulations of PSSCH using different modulation bases

The feasibility and versatility of the proposed method based on Hadamard basis, Fourier basis,

and discrete cosine transform (DCT) basis are verified by simulations. The amplitude and phase of the

target wavefronts, with a resolution of 128×128 pixels, are shown in Fig. S1(a) and S2(a), where the

amplitudes are restricted in a circle, and the phases are represented by two images with varying phase

depths, i.e. a simple binary ‘leaf’ and a grayscale ‘house’. The simulation results employing

off-axis-based PSSCH and phase-shifting-based PSSCH are shown in Fig. S1 and Fig. S2, respectively.

The simulation results demonstrate that the proposed PSSCH can reconstruct the wavefront for

both simple binary and more complex grayscale targets, when using the three different modulation

bases, regardless of whether it is based on the off-axis-based PSSCH or four steps phase-shifting-based

PSSCH. Furthermore, it’s worth noting that the method described here is not confined to the three

modulation bases mentioned, it may find applicability with other modulation bases not explicitly

discussed.

Fig. S1. The simulation results of a simple binary ‘leaf’ based on the Hadamard basis, Fourier basis,
and DCT basis when using off-axis-based PSSCH and phase-shifting-based PSSCH. (a) Amplitude and
phase of the target wavefront. Simulation results of our method using (b) - (c) the Hadamard basis, (d) -
(e) the Fourier basis, and (f) - (g) the DCT basis.



Fig. S2. The simulation results of a grayscale ‘house’ based on Hadamard basis, Fourier basis, and
DCT basis when using off-axis-based PSSCH and phase-shifting-based PSSCH. (a) Amplitude and
phase of the target wavefront. Simulation results of our method using (b) - (c) the Hadamard basis, (d) -
(e) the Fourier basis, and (f) - (g) the DCT basis.



Supplementary Section 4: Experimental setup

The experimental setup for wavefront reconstruction is illustrated in Fig. S3. A collimated laser

with a wavelength of 532 nm, expanded by a beam expander (BE), illuminates object O. The 4f optical

system, consisting of lenses L1 and L2 with a focal length of 50 mm, relays the object’s wavefront to a

DMD (Vialux V-6501), which displays the sampling patterns. The wavefront modulated by the DMD is

collected by the converging lens L3 with a focal length of 150 mm, and directed to a photodetector (PD)

with a 20 μm pinhole, which captures the center of the first-order diffracted light. The output is sampled

by a data acquisition system (DAQ, NI DAQ USB-6216) and transmitted to a computer for image

reconstruction.

Fig. S3. Schematic of the experimental setup. Laser source of wavelength 532 nm. BE: beam expander. 
O: target wavefront. L1-L3: lens with focal lengths f1=50 mm, f2=50 mm, f3=150 mm. DMD: digital 
micro-mirror device. PD: photodetector.

In the experiment, the total number of DMD pixels used is 512×512. To improve the imaging 

signal-to-noise ratio, 4×4 DMD pixels are merged as an imaging pixel, as a result, the final imaging 

solution is 128×128 pixels. The size of each DMD pixel is 7.6×7.6  µm2 . Thus, the size of each imaging 

pixel is 30.4×30.4  µm2 , and the imaging field of view (FOV) is 3.89×3.89 mm2 .


