• Opto-Electronic Engineering
  • Vol. 51, Issue 10, 240170 (2024)
Xiaoyan Wang1, Xiyu Wang2, Jie Li3、*, Wenhui Liang2, Jianhong Mou2, and Churan Bi1
Author Affiliations
  • 1School of Statistics and Data Science,Beijing Wuzi University,Beijing 101149,China
  • 2School of Information,Beijing Wuzi University,Beijing 101149,China
  • 3School of Mechanical-electronic and Vehicle Engineering,Beijing University of Civil Engineering and Architecture,Beijing 102616,China
  • show less
    DOI: 10.12086/oee.2024.240170 Cite this Article
    Xiaoyan Wang, Xiyu Wang, Jie Li, Wenhui Liang, Jianhong Mou, Churan Bi. MAS-YOLOv8n road damage detection algorithm from the perspective of drones[J]. Opto-Electronic Engineering, 2024, 51(10): 240170 Copy Citation Text show less
    References

    [1] Y F Pan, X F Zhang, G Cervone et al. Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery. IEEE J Sel Top Appl Earth Obs Remote Sens, 11, 3701-3712(2018).

    [2] X G An, J W Dang, Y P Wang et al. UAV image pavement disease detection based on improved YOLOv4. Radio Eng, 53, 1285-1294(2023).

    [3] R M Zhang, Y F Xiao, Z N Jia et al. Improved YOLOv7 algorithm for target detection in complex environments from UAV perspective. Opto-Electron Eng, 51, 240051(2024).

    [4] S L Kahmann, V Rausch, J Plümer et al. The automized fracture edge detection and generation of three-dimensional fracture probability heat maps. Med Eng Phys, 110, 103913(2022).

    [5] Benedetto A Di, M Fiani, L M Gujski. U-Net-based CNN architecture for road crack segmentation. Infrastructures, 8, 90(2023).

    [6] M S Arman, M M Hasan, F Sadia et al. Detection and classification of road damage using R-CNN and faster R-CNN: a deep learning approach, 730-741(2020). https://doi.org/10.1007/978-3-030-52856-0_58

    [7] R Girshick. Fast R-CNN, 1440-1448(2015). https://doi.org/10.1109/ICCV.2015.169

    [8] B Y Lü, Z F Zhuo, Y S Han et al. Target detection based on faster region convolution neural network. Laser Optoelectron Prog, 58, 2210017(2021).

    [9] X Chen, D L Peng, Y Gu. Real-time object detection for UAV images based on improved YOLOv5s. Opto-Electron Eng, 49, 210372(2022).

    [10] S Ajmera, C A Kumar, P Yakaiah et al. Real-time pothole detection using YOLOv5, 1-5(2022). https://doi.org/10.1109/ASSIC55218.2022.10088290

    [11] M Eriksson. Road damage detection withYolov8 on Swedish roads. https://www.diva-portal.org/smash/record.jsf?pid=diva2:1803747

    [12] V Pham, D Nguyen, C Donan. Road damage detection and classification with YOLOv7, 6416-6423(2022). https://doi.org/10.1109/BigData55660.2022.10020856

    [13] Y T Jiang, H T Yan, Y R Zhang et al. RDD-YOLOv5: road defect detection algorithm with self-attention based on unmanned aerial vehicle inspection. Sensors, 23, 8241(2023).

    [14] Q H Cheng, D F Chen, X F Wang. Small target detection in UAV images based on NDM-YOLOv8. Comput Technol Dev(2024).

    [15] Y T Li, Q S Fan, H S Huang et al. A modified YOLOv8 detection network for UAV aerial image recognition. Drones, 7, 304(2023).

    [16] W D Long, B Peng, J Hu et al. Road damage detection algorithm based on enhanced feature extraction. J Comput Appl, 44, 2264-2270(2024).

    [17] P S Meng, F Wang, W G Zhai et al. UAV-to-ground target detection based on YOLO-DSBE. Aero Weapon(2024).

    [18] J Hu, L Shen, G Sun. Squeeze-and-excitation networks, 7132-7141(2018). https://doi.org/10.1109/CVPR.2018.00745

    [19] S Woo, J Park, J Y Lee et al. CBAM: convolutional block attention module, 3-19(2018). https://doi.org/10.1007/978-3-030-01234-2_1

    [20] Q B Hou, D Q Zhou, J S Feng. Coordinate attention for efficient mobile network design, 13708-13717(2021). https://doi.org/10.1109/CVPR46437.2021.01350

    [21] Z H Zheng, P Wang, W Liu et al. Distance-IoU loss: faster and better learning for bounding box regression, 12993-13000(2020). https://doi.org/10.1609/aaai.v34i07.69993

    [22] H Zhang, S J Zhang. Shape-IoU: more accurate metric considering bounding box shape and scale(2023). https://doi.org/10.48550/arXiv.2312.17663

    [23] D Arya, H Maeda, S K Ghosh et al. RDD2022: a multi-national image dataset for automatic Road Damage Detection(2022). https://doi.org/10.48550/arXiv.2209.08538

    [24] S Q Ren, K M He, R Girshick et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 39, 1137-1149(2017).

    [25] C C Wang, W He, Y Nie et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism, 2224(2023).

    [26] C J Feng, Y J Zhong, Y Gao et al. TOOD: task-aligned one-stage object detection, 3490-3499(2021). https://doi.org/10.1109/ICCV48922.2021.00349

    [27] H F Xiang, N F Jing, J F Jiang et al. RTMDet-R2: an improved real-time rotated object detector, 352-364(2024). https://doi.org/10.1007/978-981-99-8555-5_28

    [28] Y A Zhao, W Y Lv, S L Xu et al. DETRs beat YOLOs on real-time object detection(2023). https://doi.org/10.48550/arXiv.2304.08069

    Xiaoyan Wang, Xiyu Wang, Jie Li, Wenhui Liang, Jianhong Mou, Churan Bi. MAS-YOLOv8n road damage detection algorithm from the perspective of drones[J]. Opto-Electronic Engineering, 2024, 51(10): 240170
    Download Citation