[1] D. A Buck.
[3] I.-J. Kim, J.-S. Lee. Ferroelectric transistors for memory and neuromorphic device applications.
[5] D. Zhao, Z. Chen, X. Liao. Microstructural evolution and ferroelectricity in HfO2 films.
[12] H.A. Hsain, et al.. Many routes to ferroelectric HfO2: a review of current deposition methods.
[13] J. Muller, et al.. Ferroelectricity in simple binary ZrO2 and HfO2.
[14] J. Muller, et al.. Ferroelectricity in yttrium-doped hafnium oxide.
[15] S. Mueller, et al.. Incipient ferroelectricity in Al-doped HfO2 thin films.
[16] S. Mueller, et al.. Ferroelectricity in Gd-doped HfO2 thin films.
[18] H. Yang, et al.. Facile ferroelectric phase transition driven by Si doping in HfO2.
[26] G. Karbasian, et al.. Stabilization of ferroelectric phase in tungsten capped Hf0.8Zr0.2O2.
[37] Y.S. Kim, et al.. Critical thickness of ultrathin ferroelectric BaTiO3 films.
[38] S.S. Cheema, et al.. Enhanced ferroelectricity in ultrathin films grown directly on silicon.
[39] H.-J. Lee, et al.. Scale-free ferroelectricity induced by flat phonon bands in HfO2.
[40] X. Xu, et al.. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y.
[45] Ü. Özgür, et al.. A comprehensive review of ZnO materials and devices.
[46] T. Shimizu, et al.. Growth of epitaxial orthorhombic YO1.5-substituted HfO2 thin film.
[53] S. Estandía, et al.. Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress.
[54] T. Song, et al.. Epitaxial ferroelectric La-doped Hf0.5Zr0.5O2 thin films.
[58] H. Zhong, et al.. Large-scale Hf0.5Zr0.5O2 membranes with robust ferroelectricity.
[68] L. Xu, et al.. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films.
[71] T. Mimura, et al.. No-Heating deposition of ferroelectric x%YO1.5–(100−x%)(Hf1−yZry)O2 films.
[80] S.S. Cheema, et al.. One nanometer HfO2-based ferroelectric tunnel junctions on silicon.
[83] G.R. Fox, F. Chu, T. Davenport. Current and future ferroelectric nonvolatile memory technology.
[84] T. Mikolajick, et al.. FeRAM technology for high density applications.
[85] J. Müller, et al.. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG.
[86] D.J. Jung, et al.. Highly manufacturable 1T1C 4 Mb FRAM with novel sensing scheme.
[88] J. Okuno, et al.. SoC compatible 1T1C FeRAM memory array based on ferroelectric Hf0.5Zr0.5O2.
[90] U. Schroeder, et al.. Impact of field cycling on HfO2 based non-volatile memory devices.
[97] J. Müller, et al.. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG.
[101] S. Salahuddin, K. Ni, S. Datta. The era of hyper-scaling in electronics.
[102] S. Dutta, et al.. Logic compatible high-performance ferroelectric transistor memory.
[106] H. Yu, et al.. Flexible inorganic ferroelectric thin films for nonvolatile memory devices.
[112] E. Yurchuk, et al.. Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories.
[114] V. Garcia, M. Bibes. Ferroelectric tunnel junctions for information storage and processing.
[115] A. Chanthbouala, et al.. Solid-state memories based on ferroelectric tunnel junctions.
[125] S. Jo, et al.. Negative differential capacitance in ultrathin ferroelectric hafnia.
[127] L. Ma, et al.. Ultrahigh oxygen ion mobility in ferroelectric hafnia.
[129] K.P. Kelley, et al.. Ferroelectricity in hafnia controlled via surface electrochemical state.
[132] T. Schenk, et al.. Complex internal bias fields in ferroelectric hafnium oxide.
[135] J.C. Choi, et al.. Dynamic analysis of non-linear wake-up behavior in Hf0.7Zr0.3O2 thin film.
[175] J. Okuno, et al.. Investigation of recovery phenomena in Hf0.5Zr0.5O2-based 1T1C FeRAM.
[190] K. Ni, et al.. Ferroelectric ternary content-addressable memory for one-shot learning.
[194] M. Jerry, et al.. A ferroelectric field effect transistor based synaptic weight cell.
[196] M.-K. Kim, J.-S. Lee. Ferroelectric analog synaptic transistors.
[200] V. Mikheev, et al.. Ferroelectric second-order memristor.