• Frontiers of Optoelectronics
  • Vol. 17, Issue 3, 28 (2024)
Sun Yixiang, Ni Mengyao, Zhao Ming, Yang Zhenyu, Peng Yuanlong, and Cao Danhua
DOI: 10.1007/s12200-024-00129-z Cite this Article
Sun Yixiang, Ni Mengyao, Zhao Ming, Yang Zhenyu, Peng Yuanlong, Cao Danhua. Low-light enhancement method with dual branch feature fusion and learnable regularized attention[J]. Frontiers of Optoelectronics, 2024, 17(3): 28 Copy Citation Text show less
References

[1] Chen, J., Fu, Z., Cheng, X., Wang, F.: An method for power lines insulator defect detection with attention feedback and double spatial pyramid. Electric Power Syst. Res. 218, 109175 (2023)

[2] Tao, X., Zhang, D., Wang, Z., Liu, X., Zhang, H., Xu, D.: Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Trans. Syst. Man Cybernetics Syst. 50(4), 1486–1498 (2020)

[3] Wang, S., Zou, X., Zhu, W., Zeng, L.: Insulator defects detection for aerial photography of the power grid using you only look once algorithm. J. Electr. Eng. Technol. 18, 3287–3300 (2023)

[4] Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6, 451–462 (1997)

[5] Rahman, Z., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE International Conference on Image Processing. pp. 1003–1006. IEEE, Lausanne, Switzerland (1996)

[6] Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6, 965–976 (1997)

[7] Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2017)

[8] Ying, Z., Li, G., Gao, W.: A bio-inspired multi-exposure fusion framework for low-light image enhancement (2017) arxiv.org/abs/1711.00591

[9] Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new low-light image enhancement algorithm using camera response model. In: IEEE International Conference on Computer Vision Workshops (ICCVW). pp. 3015–3022. IEEE, Venice, Italy (2017)

[10] Dong, X., Wang, G., Pang, Y., Li, W., Wen, J., Meng, W., Lu, Y.: Fast efficient algorithm for enhancement of low lighting video. In: IEEE International Conference on Multimedia and Expo. pp. 1–6. IEEE, Barcelona, Spain (2011)

[11] Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., Ma, J.: MSR-net: low-light image enhancement using deep convolutional network (2017) arxiv.org/abs/1711.02488

[12] Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. In: The British Machine Vision Conference. British Machine Vision Association, Newcastle (2018)

[13] Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

[14] Wang, W., Wei, C., Yang, W., Liu, J.: GLADNet: low-light enhancement network with global awareness. In: 13th IEEE International Conference on Automatic Face and Gesture Recognition. pp. 751–755. IEEE, Xi’an (2018)

[15] Zeng, H., Cai, J., Li, L., Cao, Z., Zhang, L.: Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time. IEEE Trans. Pattern Analysis Mach. Intell. 44, 2058–2073 (2022)

[16] Guo, C., Li, C., Guo, J., Loy, C.C., Hou, J., Kwong, S., Cong, R.: Zero-reference deep curve estimation for low-light image enhancement. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1777–1786. IEEE, Seattle (2020)

[17] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)

[18] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5627–5636. IEEE, New Orleans (2022)

[19] Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: Proceedings of the 27th ACM International Conference on Multimedia. pp. 1632–1640. ACM, Nice (2019)

[20] Zhang, Y., Guo, X., Ma, J., Liu, W., Zhang, J.: Beyond brightening low-light images. Int. J. Comput. Vis. 129, 1013–1037 (2021)

[21] Chen, L., Guo, L., Cheng, D., Kou, Q.: Structure-preserving and color-restoring up-sampling for single low-light image. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1889–1902 (2022)

[22] Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3291–3300. IEEE, Salt Lake City (2018)

[23] Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H., Shao, L.: Learning enriched features for real image restoration and enhancement. In: 2020 European Conference on Computer Vision (ECCV). pp. 492–511. Springer International Publishing (2020)

[24] Wang, Y., Wan, R., Yang, W., Li, H., Chau, L.P., Kot, A.: Lowlight image enhancement with normalizing flow. Proc. AAAI Conference Artif. Intell. 36, 2604–2612 (2022)

[25] Fu, H., Zheng, W., Meng, X., Wang, X., Wang, C., Ma, H.: You do not need additional priors or regularizers in retinex-based lowlight image enhancement. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 18125–18134. IEEE, Vancouver (2023)

[26] Cai, Y., Bian, H., Lin, J., Wang, H., Timofte, R., Zhang, Y.: Retinexformer: one-stage retinex-based transformer for low-light image enhancement. In: IEEE/CVF International Conference on Computer Vision (ICCV). pp. 12470–12479. IEEE, Paris (2023)

[27] Yang, Q., Wu, Y., Cao, D., Luo, M., Wei, T.: A lowlight image enhancement method learning from both paired and unpaired data by adversarial training. Neurocomputing 433, 83–95 (2021)

[28] Nakamura, J. (ed.): Image sensors and signal processing for digital still cameras. Taylor & Francis, Boca Raton (2006)

[29] Yin, Y., Xu, D., Tan, C., Liu, P., Zhao, Y., Wei, Y.: CLE Diffusion: controllable light enhancement diffusion model. In: Proceedings of the 31st ACM International Conference on Multimedia. pp. 8145–8156. ACM, Ottawa (2023)

[30] Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7132–7141. Salt Lake City (2018)

[31] Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., and Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention. pp. 234–241. Springer International Publishing, Munich (2015)

[32] Zheng, C., Cao, D., Hu, C.: A similarity-guided segmentation model for garbage detection under road scene. Front. Optoelectron. 15(22), 1–17 (2022)

[33] Zhang, Q., Yang, Y.: SA-net: shuffle attention for deep convolutional neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 2235–2239. IEEE, Toronto (2021)

[34] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Asilomar Conference on Signals, Systems and Computers. pp. 1398–1402. IEEE, Pacific Grove (2003)

[35] Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 2414–2423. IEEE, Las Vegas (2016)

[36] Yang, W., Wang, W., Huang, H., Wang, S., Liu, J.: Sparse gradient regularized deep retinex network for robust low-light image enhancement. IEEE Trans. Image Process. 30, 2072–2086 (2021)

[37] Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 27, 2049–2062 (2018)

[38] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2019)

[39] Li, C., Guo, C., Chen, C.L.: Learning to enhance low-light image via zero-reference deep curve estimation. IEEE Trans. Pattern Analysis Mach. Intell. 44(8), 4225–4237 (2022)

[40] Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

Sun Yixiang, Ni Mengyao, Zhao Ming, Yang Zhenyu, Peng Yuanlong, Cao Danhua. Low-light enhancement method with dual branch feature fusion and learnable regularized attention[J]. Frontiers of Optoelectronics, 2024, 17(3): 28
Download Citation