• Chinese Optics Letters
  • Vol. 22, Issue 8, 080202 (2024)
Chang Zhan1、2, Zhu Ma1、2, Jiatao Wu1、2, Maojie Li1、2, Chengyin Han2、3、4、*, Bo Lu2、3、4, and Chaohong Lee2、3、4、**
Author Affiliations
  • 1Laboratory of Quantum Engineering and Quantum Metrology, School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
  • 2Institute of Quantum Precision Measurement, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
  • 3College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 4Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
  • show less
    DOI: 10.3788/COL202422.080202 Cite this Article Set citation alerts
    Chang Zhan, Zhu Ma, Jiatao Wu, Maojie Li, Chengyin Han, Bo Lu, Chaohong Lee, "Magnetic field stabilization system designed for the cold-atom coherent population-trapping clock," Chin. Opt. Lett. 22, 080202 (2024) Copy Citation Text show less
    References

    [1] J. Vanier. Atomic clocks based on coherent population trapping: a review. Appl. Phys. B, 81, 421(2005).

    [2] R. Szmuk, V. Dugrain, W. Maineult et al. Stability of a trapped-atom clock on a chip. Phys. Rev. A, 92, 012106(2015).

    [3] H. Lin, Y. Tian, J. Chen et al. Experimental study of the application feasibility of a novel chip-scale atomic clock scheme. Rev. Sci. Instrum., 90, 053111(2019).

    [4] R. Elvin, G. W. Hoth, M. Wright et al. Cold-atom clock based on a diffractive optic. Opt. Express, 27, 38359(2019).

    [5] X. Chen, G.-Q. Yang, J. Wang et al. Coherent population trapping-Ramsey interference in cold atoms. Chin. Phys. Lett., 27, 113201(2010).

    [6] F.-X. Esnault, E. Blanshan, E. N. Ivanov et al. Cold-atom double-Λ coherent population trapping clock. Phys. Rev. A, 88, 042120(2013).

    [7] X. Liu, V. I. Yudin, A. V. Taichenachev et al. High contrast dark resonances in a cold-atom clock probed with counter propagating circularly polarized beams. Appl. Phys. Lett., 111, 224102(2017).

    [8] X. Liu, E. Ivanov, V. I. Yudin et al. Low-drift coherent population trapping clock based on laser-cooled atoms and high coherence excitation fields. Phys. Rev. Appl., 8, 054001(2017).

    [9] X. Liu, N. Ru, J. Duan et al. High-performance coherent population trapping clock based on laser-cooled atoms. Chin. Phys. B, 31, 043201(2022).

    [10] N. Almat, M. Gharavipour, W. Moreno et al. Long-term stability analysis toward <10−14 level for a highly compact POP Rb cell atomic clock. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 67, 207(2019).

    [11] R. Boudot, P. Dziuban, M. Hasegawa et al. Coherent population trapping resonances in Cs–Ne vapor microcells for miniature clocks applications. J. Appl. Phys., 109, 014912(2011).

    [12] X. Liu, J.-M. Mérolla, S. Guérandel et al. Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping. Phys. Rev. A, 87, 013416(2013).

    [13] H. Cheng, S. Deng, Z. Zhang et al. Uncertainty evaluation of the second-order Zeeman shift of a transportable 87Rb atomic fountain clock. Chin. Opt. Lett., 19, 120201(2021).

    [14] C. Shi, R. Wei, Z. Zhou et al. Magnetic field measurement on 87Rb atomic fountain clock. Chin. Opt. Lett., 8, 549(2010).

    [15] W. Wei, P. Hao, Z. Ma et al. Measurement and suppression of magnetic field noise of trapped ion qubit. J. Phys. B At. Mol. Opt. Phys., 55, 075001(2022).

    [16] B. Merkel, K. Thirumalai, J. Tarlton et al. Magnetic field stabilization system for atomic physics experiments. Rev. Sci. Instrum., 90, 044702(2019).

    [17] A. Farolfi, D. Trypogeorgos, G. Colzi et al. Design and characterization of a compact magnetic shield for ultracold atomic gas experiments. Rev. Sci. Instrum., 90, 115114(2019).

    [18] X.-T. Xu, Z.-Y. Wang, R.-H. Jiao et al. Ultra low noise magnetic field for quantum gases. Rev. Sci. Instrum., 90, 054708(2019).

    [19] C. J. Dedman, R. Dall, L. Byron et al. Active cancellation of stray magnetic fields in a Bose-Einstein condensation experiment. Rev. Sci. Instrum., 78, 024703(2007).

    [20] Z.-X. Duan, W.-T. Wu, Y.-T. Lin et al. Simple and active magnetic-field stabilization for cold atom experiments. Rev. Sci. Instrum., 93, 123201(2022).

    [21] V. Biancalana, G. Bevilacqua, P. Chessa et al. A low noise modular current source for stable magnetic field control. Rev. Sci. Instrum., 88, 035107(2017).

    [22] Y.-M. Yang, H.-T. Xie, W.-C. Ji et al. Ultra-low noise and high bandwidth bipolar current driver for precise magnetic field control. Rev. Sci. Instrum., 90, 014701(2019).

    [23] R. Thomas, N. Kjærgaard. A digital feedback controller for stabilizing large electric currents to the ppm level for Feshbach resonance studies. Rev. Sci. Instrum., 91, 034705(2020).

    [24] H. Liu, S. Peng, B. Jiao et al. Ultra-low noise bipolar current source for ultracold atom magnetic system. Rev. Sci. Instrum., 94, 053201(2023).

    [25] C. Han, B. Lu, C. Lee. Ramsey interferometry with cold atoms in coherent population trapping. Adv. Phys. X, 9, 2317896(2024).

    [26] R. Fang, C. Han, X. Jiang et al. Temporal analog of Fabry-Pérot resonator via coherent population trapping. npj Quantum Inf., 7, 143(2021).

    [27] C. Han, J. Huang, X. Jiang et al. Adaptive Bayesian algorithm for achieving a desired magneto-sensitive transition. Opt. Express, 29, 21031(2021).

    [28] B. Wu, Z. Wang, B. Cheng et al. “Accurate measurement of the quadratic Zeeman coefficient of 87Rb clock transition based on the Ramsey atom interferometer. J. Phys. B At. Mol. Opt. Phys., 47, 015001(2013).

    [29] S. Mejri, F. Tricot, J.-M. Danet et al. Atomic clock using coherent population trapping in a cesium cell: frequency stability and limitations. J. Phys. Conf. Ser., 723, 012014(2016).

    Chang Zhan, Zhu Ma, Jiatao Wu, Maojie Li, Chengyin Han, Bo Lu, Chaohong Lee, "Magnetic field stabilization system designed for the cold-atom coherent population-trapping clock," Chin. Opt. Lett. 22, 080202 (2024)
    Download Citation