[1] A P Côté, A I Benin, N W Ockwig et al. Porous,crystalline,covalent organic frameworks. Science, 310, 1166-1170(2005).
[2] T Hasselstrom, M C Henry, B Murr. Synthesis of amino acids by beta radiation. Science, 125, 350-351(1957).
[3] M X Zhang, J C Chen, M L Wang et al. Electron beam-induced preparation of AIE non-woven fabric with excellent fluorescence durability. Applied Surface Science, 541, 148382(2021).
[4] M X Zhang, J C Chen, M J Zhang et al. Radiation-induced in situ-printed nonconjugated fluorescent nonwoven fabric with superior fluorescent properties. ACS Applied Materials & Interfaces, 12, 49258-49264(2020).
[5] M X Zhang, Q H Gao, C G Yang et al. Preparation of amidoxime-based nylon-66 fibers for removing uranium from low-concentration aqueous solutions and simulated nuclear industry effluents. Industrial & Engineering Chemistry Research, 55, 10523-10532(2016).
[6] M X Zhang, Q H Gao, C G Yang et al. Preparation of antimicrobial MnO4--doped nylon-66 fibers with excellent laundering durability. Applied Surface Science, 422, 1067-1074(2017).
[7] M X Zhang, M J Yuan, M J Zhang et al. Efficient removal of uranium from diluted aqueous solution with hydroxypyridone functionalized polyethylene nonwoven fabrics. Radiation Physics and Chemistry, 171, 108742(2020).
[8] H Fujita, M Izawa, H Yamazaki. γ-ray-induced formation of gold Sol from chloroauric acid solution. Nature, 196, 666-667(1962).
[9] J L Marignier, J Belloni, M O Delcourt et al. Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction. Nature, 317, 344-345(1985).
[10] M X Zhang, J C Chen, M L Wang et al. Pyrene-based nonwoven fabric with tunable fluorescence properties by employing the aggregation-caused quenching effect. ACS Applied Materials & Interfaces, 13, 9036-9042(2021).
[11] M X Zhang, J C Chen, X Z Mao et al. Fluorescent nonwoven fabric with synergistic dual fluorescence emission for visible and selective ammonia gas detection. Radiation Physics and Chemistry, 201, 110453(2022).
[12] M X Zhang, J C Chen, S T Zhang et al. Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. Journal of the American Chemical Society, 142, 9169-9174(2020).
[13] A M Elewa, I M A Mekhemer, A F M EL-Mahdy et al. Room-temperature synthesis of covalent organic frameworks using gamma-irradiation in open-air conditions. Small, 20, 2311472(2024).
[14] J C Chen, M X Zhang, S T Zhang et al. Metal-organic Framework@Metal oxide heterostructures induced by electron-beam radiation. Angewandte Chemie International Edition, 61, e202212532(2022).
[15] J C Chen, M X Zhang, J Shu et al. Radiation-induced de novo defects in metal-organic frameworks boost CO2 sorption. Journal of the American Chemical Society, 145, 23651-23658(2023).
[16] M X Zhang, J C Chen, X F Zhao et al. A MOF@Metal oxide heterostructure induced by post-synthetic gamma-ray irradiation for catalytic reduction. Angewandte Chemie International Edition, 63, e202405213(2024).
[17] J C Chen, M X Zhang, J Shu et al. Electron beam irradiation-induced formation of defect-rich zeolites under ambient condition within minutes. Angewandte Chemie International Edition, 60, 14858-14863(2021).
[18] X Q Chen, M H Qiu, S G Li et al. Gamma-ray irradiation to accelerate crystallization of mesoporous zeolites. Angewandte Chemie International Edition, 59, 11325-11329(2020).
[19] T Q Ma, E A Kapustin, S X Yin et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science, 361, 48-52(2018).
[20] J Han, J Feng, J Kang et al. Fast growth of single-crystal covalent organic frameworks for laboratory X-ray diffraction. Science, 383, 1014-1019(2024).
[21] R Babarao, J W Jiang. Exceptionally high CO2 storage in covalent-organic frameworks: atomistic simulation study. Energy & Environmental Science, 1, 139(2008).
[22] H Furukawa, O M Yaghi. Storage of hydrogen,methane,and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. Journal of the American Chemical Society, 131, 8875-8883(2009).
[23] C J Doonan, D J Tranchemontagne, T G Glover et al. Exceptional ammonia uptake by a covalent organic framework. Nature Chemistry, 2, 235-238(2010).
[24] Q Sun, B Aguila, J Perman et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. Journal of the American Chemical Society, 139, 2786-2793(2017).
[25] Q Y Lu, Y C Ma, H Li et al. Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions. Angewandte Chemie International Edition, 57, 6042-6048(2018).
[26] Q Sun, B Aguila, L D Earl et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Advanced Materials, 30, 1705479(2018).
[27] X H Guo, Y Li, M C Zhang et al. Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid I2 adsorption. Angewandte Chemie International Edition, 59, 22697-22705(2020).
[28] Y Wang, M S Xie, J H Lan et al. Radiation controllable synthesis of robust covalent organic framework conjugates for efficient dynamic column extraction of 99TcO4-. Chem, 6, 2796-2809(2020).
[29] Y Wang, J H Lan, X F Yang et al. Superhydrophobic phosphonium modified robust 3D covalent organic framework for preferential trapping of charge dispersed oxoanionic pollutants. Advanced Functional Materials, 32, 2205222(2022).
[30] X W Wu, X Han, Q S Xu et al. Chiral BINOL-based covalent organic frameworks for enantioselective sensing. Journal of the American Chemical Society, 141, 7081-7089(2019).
[31] C Yuan, W Y Jia, Z Y Yu et al. Are highly stable covalent organic frameworks the key to universal chiral stationary phases for liquid and gas chromatographic separations?. Journal of the American Chemical Society, 144, 891-900(2022).
[32] P F Wei, M Z Qi, Z P Wang et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. Journal of the American Chemical Society, 140, 4623-4631(2018).
[33] S Y Ding, J Gao, Q Wang et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki-miyaura coupling reaction. Journal of the American Chemical Society, 133, 19816-19822(2011).
[34] T Li, P L Zhang, L Z Dong et al. Post-synthetic rhodium (III) complexes in covalent organic frameworks for photothermal heterogeneous C-H activation. Angewandte Chemie International Edition, 63, e202318180(2024).
[35] X S Ding, L Chen, Y Honsho et al. An n-channel two-dimensional covalent organic framework. Journal of the American Chemical Society, 133, 14510-14513(2011).
[36] L Chen, K Furukawa, J Gao et al. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions. Journal of the American Chemical Society, 136, 9806-9809(2014).
[37] M C Wang, M Wang, H H Lin et al. High-mobility semiconducting two-dimensional conjugated covalent organic frameworks with p-type doping. Journal of the American Chemical Society, 142, 21622-21627(2020).
[38] C R DeBlase, K E Silberstein, T T Truong et al. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. Journal of the American Chemical Society, 135, 16821-16824(2013).
[39] H Xu, S S Tao, D L Jiang. Proton conduction in crystalline and porous covalent organic frameworks. Nature Materials, 15, 722-726(2016).
[40] S Q Xu, G Wang, B P Biswal et al. A nitrogen-rich 2D sp2-carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries. Angewandte Chemie International Edition, 58, 849-853(2019).
[41] G Q Lin, H M Ding, D Q Yuan et al. A pyrene-based,fluorescent three-dimensional covalent organic framework. Journal of the American Chemical Society, 138, 3302-3305(2016).
[42] J Tan, S Namuangruk, W F Kong et al. Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angewandte Chemie International Edition, 55, 13979-13984(2016).
[43] Q R Fang, J H Wang, S Gu et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. Journal of the American Chemical Society, 137, 8352-8355(2015).
[44] P Kuhn, M Antonietti, A Thomas. Porous,covalent triazine-based frameworks prepared by ionothermal synthesis. Angewandte Chemie (International Ed.), 47, 3450-3453(2008).
[45] N L Campbell, R Clowes, L K Ritchie et al. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chemistry of Materials, 21, 204-206(2009).
[46] B P Biswal, S Chandra, S Kandambeth et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. Journal of the American Chemical Society, 135, 5328-5331(2013).
[47] X Y Guan, Y C Ma, H Li et al. Fast,ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks. Journal of the American Chemical Society, 140, 4494-4498(2018).
[48] S Kim, C Park, M Lee et al. Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth. Advanced Functional Materials, 27, 1700925(2017).
[49] J He, X Jiang, F J Xu et al. Low power,low temperature and atmospheric pressure plasma-induced polymerization: facile synthesis and crystal regulation of covalent organic frameworks. Angewandte Chemie International Edition, 60, 9984-9989(2021).
[50] Z F Wang, Y S Zhang, J J Liu et al. Flux synthesis of two-dimensional covalent organic frameworks. Nature Protocols, 19, 3489-3519(2024).
[51] M X Zhang, M J Yuan, X F Zhao et al. Radiation-induced one-pot synthesis of grafted covalent organic frameworks. Science China Chemistry, 66, 1781-1787(2023).
[52] X F Zhao, J C Chen, X Z Mao et al. One-pot synthesis of a mixed-valent copper(I/II)-coordinated covalent organic framework induced by γ-ray radiation. Inorganic Chemistry, 63, 12333-12341(2024).
[53] D Y Zhu, Z Q Zhang, L B Alemany et al. Rapid,ambient temperature synthesis of imine covalent organic frameworks catalyzed by transition-metal nitrates. Chemistry of Materials, 33, 3394-3400(2021).
[54] M X Zhang, X Z Mao, J C Chen et al. Radiation-assisted assembly of a highly dispersed nanomolybdenum-functionalized covalent organic framework. ACS Applied Materials & Interfaces, 16, 22504-22511(2024).
[55] S C Zhong, Y Wang, J H Lan et al. Radiation-assisted synthesis of crown ether-modified covalent organic frameworks for lithium isotope separation. CCS Chemistry, 6, 2594-2606(2024).
[56] S C Zhong, Y Wang, M S Xie et al. Radiation reduction modification of sp2 carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(VI) removal. Chinese Chemical Letters, 110312(2024).
[57] E Q Jin, M Asada, Q Xu et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science, 357, 673-676(2017).
[58] B Zhang, M F Wei, H Y Mao et al. Crystalline dioxin-linked covalent organic frameworks from irreversible reactions. Journal of the American Chemical Society, 140, 12715-12719(2018).
[59] X Y Guan, H Li, Y C Ma et al. Chemically stable polyarylether-based covalent organic frameworks. Nature Chemistry, 11, 587-594(2019).
[60] D L Pastoetter, S Q Xu, M Borrelli et al. Synthesis of vinylene-linked two-dimensional conjugated polymers via the horner–wadsworth–emmons reaction. Angewandte Chemie International Edition, 59, 23620-23625(2020).