• Chinese Journal of Lasers
  • Vol. 52, Issue 3, 0307202 (2025)
Jialin Teng1, Yiping Zou2, and Jing Wang1、*
Author Affiliations
  • 1College of Photonic and Electronic Engineering, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, Fujian , China
  • 2College of Life Sciences, Shandong Normal University, Jinan 250358, Shandong , China
  • show less
    DOI: 10.3788/CJL241196 Cite this Article Set citation alerts
    Jialin Teng, Yiping Zou, Jing Wang. CRISPR/Cas Systems with Integrated Nucleic Acid Detection Technologies Facilitate Innovative Applications[J]. Chinese Journal of Lasers, 2025, 52(3): 0307202 Copy Citation Text show less
    References

    [1] Adli M. The CRISPR tool kit for genome editing and beyond[J]. Nature Communications, 9, 1911(2018).

    [2] Smargon A A, Shi Y J, Yeo G W. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering[J]. Nature Cell Biology, 22, 143-150(2020).

    [3] Xie S Y, Ji Z R, Suo T Y et al. Advancing sensing technology with CRISPR: from the detection of nucleic acids to a broad range of analytes: a review[J]. Analytica Chimica Acta, 1185, 338848(2021).

    [4] Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 346, 1077-1087(2014).

    [5] Strecker J, Jones S, Koopal B et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications, 10, 212(2019).

    [6] Wang J Y, Zhang C Z, Feng B. The rapidly advancing class 2 CRISPR-Cas technologies: a customizable toolbox for molecular manipulations[J]. Journal of Cellular and Molecular Medicine, 24, 3256-3270(2020).

    [7] Dronina J, Samukaite-Bubniene U, Ramanavicius A. Towards application of CRISPR-Cas12a in the design of modern viral DNA detection tools (review)[J]. Journal of Nanobiotechnology, 20, 41(2022).

    [8] Liu L, Li X Y, Wang J Y et al. Two distant catalytic sites are responsible for C2c2 RNase activities[J]. Cell, 168, 121-134(2017).

    [9] Gupta N, Augustine S, Narayan T et al. Point-of-care PCR assays for COVID-19 detection[J]. Biosensors, 11, 141(2021).

    [10] Huang Z, Tian D, Liu Y et al. Ultra-sensitive and high-throughput CRISPR-powered COVID-19 diagnosis[J]. Biosensors and Bioelectronics, 164, 112316(2020).

    [11] Qiu X T, Xu S, Liu X P et al. A CRISPR-based nucleic acid detection platform (CRISPR-CPA): application for detection of nocardia farcinica[J]. Journal of Applied Microbiology, 132, 3685-3693(2022).

    [12] Zheng R X, Zhang L X, Yu C et al. ACURAT: advancing tuberculosis detection through assembled PCR & CRISPR for ultra-sensitive rifampin-resistant analysis testing[J]. Chemical Engineering Journal, 494, 152712(2024).

    [13] Wang S, Li H, Kou Z et al. Highly sensitive and specific detection of hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPR-Cas13a system[J]. Clinical Microbiology and Infection, 27, 443-450(2021).

    [14] Ruiz-Villalba A, van Pelt-Verkuil E, Gunst Q D et al. Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR)[J]. Biomolecular Detection and Quantification, 14, 7-18(2017).

    [15] Gootenberg J S, Abudayyeh O O, Lee J W et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 356, 438-442(2017).

    [16] Myhrvold C, Freije C A, Gootenberg J S et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 360, 444-448(2018).

    [17] Gao L A, Wilkinson M E, Strecker J et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins[J]. Science, 377, eabm4096(2022).

    [18] Gao L Y, Cox D B T, Yan W X et al. Engineered Cpf1 variants with altered PAM specificities[J]. Nature Biotechnology, 35, 789-792(2017).

    [19] Mayuramart O, Nimsamer P, Rattanaburi S et al. Detection of severe acute respiratory syndrome coronavirus 2 and influenza viruses based on CRISPR-Cas12a[J]. Experimental Biology and Medicine, 246, 400-405(2021).

    [20] Aman R, Marsic T, Rao G S et al. iSCAN-V2: a one-pot RT-RPA-CRISPR/Cas12b assay for point-of-care SARS-CoV-2 detection[J]. Frontiers in Bioengineering and Biotechnology, 9, 800104(2022).

    [21] Qian W D, Huang J, Wang T et al. Visual detection of human metapneumovirus using CRISPR-Cas12a diagnostics[J]. Virus Research, 305, 198568(2021).

    [22] Qian W D, Huang J, Wang X F et al. CRISPR-Cas12a combined with reverse transcription recombinase polymerase amplification for sensitive and specific detection of human norovirus genotype GII.4[J]. Virology, 564, 26-32(2021).

    [23] Feng W, Peng H Y, Xu J Y et al. Integrating reverse transcription recombinase polymerase amplification with CRISPR technology for the one-tube assay of RNA[J]. Analytical Chemistry, 93, 12808-12816(2021).

    [24] Uno N, Li Z Y, Avery L et al. CRISPR gel: a one-pot biosensing platform for rapid and sensitive detection of HIV viral RNA[J]. Analytica Chimica Acta, 1262, 341258(2023).

    [25] Lee C Y, Kim H, Degani I et al. Empowering the on-site detection of nucleic acids by integrating CRISPR and digital signal processing[J]. Nature Communications, 15, 6271(2024).

    [26] Shu B W, Yang J J, Chen W T et al. Temperature-programmed microfluidic CRISPR diagnostics enable rapid and automatous point-of-care testing for syphilis[J]. Chemical Engineering Journal, 496, 154174(2024).

    [27] Chen Z, Li J F, Li T Z et al. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2[J]. National Science Review, 9, nwac104(2022).

    [28] Zheng F, Chen Z, Li J F et al. A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification[J]. Advanced Science, 9, e2105231(2022).

    [29] Chen Z, Meng C L, Wang X L et al. Ultrasensitive DNA origami plasmon sensor for accurate detection in circulating tumor DNAs[J]. Laser & Photonics Reviews, 18, 2400035(2024).

    [30] Chen Y Z, Chen Z, Li T Z et al. Ultrasensitive and specific clustered regularly interspaced short palindromic repeats empowered a plasmonic fiber tip system for amplification-free monkeypox virus detection and genotyping[J]. ACS Nano, 17, 12903-12914(2023).

    [31] Ma J. Low-concentration detection of chlorobenzene based on laser Raman spectroscopy[J]. Chinese Journal of Lasers, 41, 0215001(2014).

    [32] Huang Z F, Li Y L, Du S R et al. Recent progress in sperm evaluation and screening based on Raman spectroscopy[J]. Chinese Journal of Lasers, 50, 1507202(2023).

    [33] Liu Y, Wang N, He S H et al. Research progress on epidemic virus detection based on surface-enhanced Raman spectroscopy[J]. Chinese Journal of Lasers, 51, 0907006(2024).

    [34] Su A L, Liu Y, Cao X M et al. A universal CRISPR/Cas12a-mediated AuNPs aggregation-based surface-enhanced Raman scattering (CRISPR/Cas-SERS) platform for virus gene detection[J]. Sensors and Actuators B: Chemical, 369, 132295(2022).

    [35] Liu J H, Chen J H, Wu D et al. CRISPR-/ Cas12a-mediated liposome-amplified strategy for the surface-enhanced Raman scattering and naked-eye detection of nucleic acid and application to food authenticity screening[J]. Analytical Chemistry, 93, 10167-10174(2021).

    [36] Pang Y F, Li Q, Wang C W et al. CRISPR-cas12a mediated SERS lateral flow assay for amplification-free detection of double-stranded DNA and single-base mutation[J]. Chemical Engineering Journal, 429, 132109(2022).

    [37] Wang J F, Jiang H, Chen Y H et al. CRISPR/Cas9-mediated SERS/colorimetric dual-mode lateral flow platform combined with smartphone for rapid and sensitive detection of Staphylococcus aureus[J]. Biosensors and Bioelectronics, 249, 116046(2024).

    [38] Wang H M, Su A L, Bao C X et al. A CRISPR/Cas12a-SERS platform for amplification-free detection of African swine fever virus genes[J]. Talanta, 267, 125225(2024).

    [39] Chen K, Shen Z Y, Wang G Z et al. Research progress of CRISPR-based biosensors and bioassays for molecular diagnosis[J]. Frontiers in Bioengineering and Biotechnology, 10, 986233(2022).

    [40] Dai Y F, Somoza R A, Wang L et al. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor[J]. Angewandte Chemie (International Ed), 58, 17399-17405(2019).

    [41] Xu W, Jin T, Dai Y F et al. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems[J]. Biosensors and Bioelectronics, 155, 112100(2020).

    [42] Li Z Y, Ding X, Yin K et al. Electric field-enhanced electrochemical CRISPR biosensor for DNA detection[J]. Biosensors and Bioelectronics, 192, 113498(2021).

    [43] Wu C S, Chen Z, Li C Z et al. CRISPR-Cas12a-empowered electrochemical biosensor for rapid and ultrasensitive detection of SARS-CoV-2 delta variant[J]. Nano-Micro Letters, 14, 159(2022).

    [44] Qian H, Guo X P, Yang H Y et al. Enhancing CRISPR/Cas-mediated electrochemical detection of nucleic acid using nanoparticle-labeled covalent organic frameworks reporters[J]. Biosensors and Bioelectronics, 261, 116522(2024).

    [45] Zhao J H, Kong D R, Zhang G H et al. An efficient CRISPR/Cas cooperative shearing platform for clinical diagnostics applications[J/OL]. Angewandte Chemie (International Ed), 1-10. https:∥onlinelibrary.wiley.com/doi/10.1002/ange. 202411705

    [46] Bruch R, Baaske J, Chatelle C et al. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics[J]. Advanced Materials, 31, 1905311(2019).

    [47] Zhai S S, Yang Y, Wu Y H et al. A visual CRISPR/dCas9-mediated enzyme-linked immunosorbent assay for nucleic acid detection with single-base specificity[J]. Talanta, 257, 124318(2023).

    Jialin Teng, Yiping Zou, Jing Wang. CRISPR/Cas Systems with Integrated Nucleic Acid Detection Technologies Facilitate Innovative Applications[J]. Chinese Journal of Lasers, 2025, 52(3): 0307202
    Download Citation