• Optics and Precision Engineering
  • Vol. 32, Issue 24, 3632 (2024)
Zhonghe LIU, Zongchun LI*, and Hua HE
Author Affiliations
  • Institute of Geospatial Information, Information Engineering University, Zhengzhou450001, China
  • show less
    DOI: 10.37188/OPE.20243224.3632 Cite this Article
    Zhonghe LIU, Zongchun LI, Hua HE. An optimization method for selecting common points considering position distribution and measuring precision in coordinate transformation[J]. Optics and Precision Engineering, 2024, 32(24): 3632 Copy Citation Text show less
    References

    [1] Y CHEN, Y Z SHEN, D J LIU. A simplified model of three dimensional-datum transformation adapted to big rotation angle. Geomatics and Information Science of Wuhan University, 29, 1101-1105(2004).

         陈义, 沈云中, 刘大杰. 适用于大旋转角的三维基准转换的一种简便模型. 武汉大学学报(信息科学版), 29, 1101-1105(2004).

    [2] 姚宜斌, 黄承猛, 李程春. 一种适用于大角度的三维坐标转换参数求解算法. 武汉大学学报(信息科学版), 37, 253-256(2012).

         Y B YAO, C M HUANG, C C LI et al. A new algorithm for solution of transformation parameters of big rotation angle’s 3D coordinate. Geomatics and Information Science of Wuhan University, 37, 253-256(2012).

    [3] Z P LÜ, J C WU, Y GONG. Improvement of a three-dimensional coordinate transformation model adapted to big rotation angle based on quaternion. Geomatics and Information Science of Wuhan University, 41, 547-553(2016).

         吕志鹏, 伍吉仓, 公羽. 利用四元数改进大旋转角坐标变换模型. 武汉大学学报(信息科学版), 41, 547-553(2016).

    [4] L LIU, Z G HE, Z Y ZHENG et al. An iterative algorithm for solving the transformation parameters of big rotation angle’s 3D coordinate. Science of Surveying and Mapping, 46, 65-69, 76(2021).

         刘磊, 何占国, 郑作亚. 大角度三维坐标转换参数的一种迭代解法. 测绘科学, 46, 65-69, 76(2021).

    [5] 姚吉利, 韩保民, 杨元喜. 罗德里格矩阵在三维坐标转换严密解算中的应用. 武汉大学学报(信息科学版), 31, 1094-1096, 1119(2006).

         J L YAO, B M HAN, Y X YANG. Applications of lodrigues matrix in 3D coordinate transformation. Geomatics and Information Science of Wuhan University, 31, 1094-1096, 1119(2006).

    [6] H S KUTOGLU, C MEKIK, H AKCIN. Effects of errors in coordinates on transformation parameters. Journal of Surveying Engineering, 129, 91-94(2003).

    [7] H S KUTOGLU, P VANÍČEK. Effect of common point selection on coordinate transformation parameter determination. Studia Geophysica et Geodaetica, 50, 525-536(2006).

    [8] 欧吉坤. 粗差的拟准检定法(QUAD法). 测绘学报, 28, 15-20(1999).

         J K OU. Quasi-Accurate Detection of gross errors (QUAD). Acta Geodaetica et Cartographica Sinica, 28, 15-20(1999).

    [9] W QU, H L CHEN, Q ZHANG et al. A robust estimation algorithm for the increasing breakdown point based on quasi-accurate detection and its application to parameter estimation of the GNSS crustal deformation model. Journal of Geodesy, 95, 125(2021).

    [10] 郭建锋. 尺度因子的MAD估计及其在测量平差中的应用. 武汉大学学报(信息科学版), 46, 1636-1640(2021).

         J F GUO. MAD estimate of scale factor and its applications in measurement adjustment. Geomatics and Information Science of Wuhan University, 46, 1636-1640(2021).

    [11] 杨玲, 沈云中, 楼立志. 基于中位参数初值的等价权抗差估计方法. 测绘学报, 40, 28-32(2011).

         L YANG, Y Z SHEN, L Z LOU. Equivalent weight robust estimation method based on Median parameter estimates. Acta Geodaetica et Cartographica Sinica, 40, 28-32(2011).

    [12] Z H LIU, Z C LI, H HE et al. Robust solution of coordinate transformation parameters with a high breakdown point. Measurement Science and Technology, 34(2023).

    [13] P L XU. Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. Journal of Geodesy, 79, 146-159(2005).

    [14] H S KUTOGLU, T AYAN. The role of common point distribution in obtaining reliable parameters for coordinate transformation. Applied Mathematics and Computation, 176, 751-758(2006).

    [15] Y Z SHEN, L M HU, B F LI. Ill-posed problem in determination of coordinate transformation parameters with small area’s data based on bursa model. Acta Geodaetica et Cartographica Sinica, 35, 95-98(2006).

         沈云中, 胡雷鸣, 李博峰. Bursa模型用于局部区域坐标变换的病态问题及其解法. 测绘学报, 35, 95-98(2006).

    [16] 王玉成, 胡伍生. 坐标转换中公共点选取对于转换精度的影响. 现代测绘, 31, 13-15(2008).

         Y C WANG, W S HU. Influence caused by public point selection on accuracy of coordinate conversion. Modern Surveying and Mapping, 31, 13-15(2008).

    [17] 赵宝锋, 张雪, 蒋廷臣. 坐标转换模型及公共点选取对转换成果精度的影响. 淮海工学院学报(自然科学版), 18, 54-56(2009).

         B F ZHAO, X ZHANG, T C JIANG. Effect of coordinate conversion model and the selected common points on the accuracy of conversion results. Journal of Jiangsu Ocean University (Natural Science Edition), 18, 54-56(2009).

    [18] H L ZHANG, J R LIN, J G ZHU. Three-dimensional coordinate transformation accuracy and its influencing factors. Opto-Electronic Engineering, 39, 26-31(2012).

         张皓琳, 林嘉睿, 邾继贵. 三维坐标转换精度及影响因素的研究. 光电工程, 39, 26-31(2012).

    [19] Y Y ZHOU, G R PAN. Accuracy of coordinate transfer influenced by different distributions of common points. Journal of Geodesy and Geodynamics, 33, 105-109(2013).

         周跃寅, 潘国荣. 公共点分布对坐标转换精度的影响. 大地测量与地球动力学, 33, 105-109(2013).

    [20] H LI, W LIU, Y ZHANG et al. Model establishment and error compensation of laser tracker station-transfer. Opt. Precision Eng., 27, 771-783(2019).

         李辉, 刘巍, 张洋. 激光跟踪仪多基站转站精度模型与误差补偿. 光学 精密工程, 27, 771-783(2019).

    [21] Y REN, J R LIN, J G ZHU et al. Coordinate transformation uncertainty analysis in large-scale metrology. IEEE Transactions on Instrumentation and Measurement, 64, 2380-2388(2015).

    [22] 丁克良, 靳婷婷, 蒋志强. 三维多点交会点位空间分布优化与精度分析. 光学 精密工程, 29, 691-700(2021).

         K L DING, T T JIN, Z Q JIANG et al. Optimization and accuracy analysis of point spatial distribution based on three-dimensional multi-point intersection. Opt. Precision Eng., 29, 691-700(2021).

    [23] H YIN, J J WANG, X TIAN. Common points selection in 3D datum transformation. Journal of Geomatics, 41, 14-17(2016).

         尹晖, 王晶晶, 田鑫. 三维空间基准转换公共点选取的新方法. 测绘地理信息, 41, 14-17(2016).

    [24] J T LI, W WANG, B SHI. Common point selection in coordinate transformation based on the distribution in quadrant. Engineering of Surveying and Mapping, 27, 66-70(2018).

         李金涛, 王微, 石波. 坐标系转换中基于象限分布的公共点选取方法. 测绘工程, 27, 66-70(2018).

    [25] 贺俊凯, 徐东升, 王明远. 顾及控制点空间分布的坐标转换模型研究. 全球定位系统, 47, 18-22(2022).

         J K HE, D S XU, M Y WANG et al. Research on coordinate transformation model considering the spatial distribution of control points. GNSS World of China, 47, 18-22(2022).

    [26] 罗传文. 点空间分析: 分维与均匀度. 科技导报, 22, 51-54(2004).

         C W LUO. Point spatial analyses-fractal dimension and uniform index. Science & Technology Review, 22, 51-54(2004).

    [27] Q LU. Fractal Description Method of Spatial Distribution Characteristics of Point Sets(2019).

         陆权. 点集空间分布特征的分形描述方法(2019).

    [28] T DING, X Y HE, W WANG et al. A common points selection method based on the uniformity of FLTMMS for pre-alignment of particle accelerators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1062, 169147(2024).

    [29] Q M TAN, N G LU, M L DONG et al. Influence of geometrical distribution of common points on the accuracy of coordinate transformation. Applied Mathematics and Computation, 221, 411-423(2013).

    [30] Q M TAN, S GAO, D L LI et al. Determination of reasonable geometrical distribution of markers for accurate motion parameters of rigid body, 1033-1037(2013).

    [31] W B HUANG. Modern Adjustment Theory and Its Application(1992).

         黄维彬. 近代平差理论及其应用(1992).

    [32] 李宗春, 张冠宇, 冯其强. 工程测量学(2024).

         Z C LI, G Y ZHANG, Q Q FENG et al. Engineering Surveying(2024).

    Zhonghe LIU, Zongchun LI, Hua HE. An optimization method for selecting common points considering position distribution and measuring precision in coordinate transformation[J]. Optics and Precision Engineering, 2024, 32(24): 3632
    Download Citation