• Laser & Optoelectronics Progress
  • Vol. 62, Issue 2, 0200002 (2025)
Yirui Zhu1、*, Jiulin Shi1, Lingkai Huang1, Lihua Fang1, Tomas E. Gomez Alvarez-Arenas2, and Xingdao He1
Author Affiliations
  • 1Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, Jiangxi , China
  • 2Information and Physical Technologies Institute, Spanish National Research Council, Madrid 28006, Spain
  • show less
    DOI: 10.3788/LOP241618 Cite this Article Set citation alerts
    Yirui Zhu, Jiulin Shi, Lingkai Huang, Lihua Fang, Tomas E. Gomez Alvarez-Arenas, Xingdao He. Advances in Optical Coherence Elastography and Its Applications[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0200002 Copy Citation Text show less

    Abstract

    Since its introduction in 1998, optical coherent elastography technology has significantly advanced in detecting and imaging of the biomechanical properties of soft tissues over the past two decades. This technology stands out owing to its high spatial resolution, sensitivity in measuring elastic moduli, and rapid imaging speed, making it one of the most promising optical elastography technologies for clinical application. At present, research groups worldwide are focusing on three main core elements of optical coherent elastography technology: developing safer and more effective excitation methods to generate the necessary vibration signals for elasticity evaluation, establishing new mechanical models to accurately quantify the biomechanical properties of tissues under complex boundary conditions, and developing new algorithms for the quantitative analysis of biomechanical properties. These efforts aim to accelerate the clinical application and transformation of this technology. This article reviews the fundamental theories and latest advancements in optical coherent elastography, explores noncontact approaches, establishes mechanical wave models for various biological tissues, and outlines future directions to facilitate its clinical application.
    lc=4ln(2)πλ02Δλ
    Δφ(z)=arctanImIA(z,t1)IA(z,t0)*ReIA(z,t1)IA(z,t0)*
    Δφ(z0)=arctanm=0M-1[Q(zm,t0)]II(zm,t1)-II(zm,t0)Q(zm,t1)]m=0M-1[II(zm,t0)Q(zm,t1)+Q(zm,t0)Q(zm,t1)]1+arctanm=0M-2n=01[Q(zm,tn)II(zm+1,tn)-II(zm,tn)Q(zm+1,tn)]m=0M-2n=01[II(zm,tn)II(zm+1,tn)+Q(zm,tn)Q(zm+1,tn)]2π
    uz(z)=Δφ(z)λ0/4πn
    εxxεyyεzz2εxy2εxz2εyz=1/E-v/E-v/E000-v/E1/E-v/E000-v/E-v/E1/E0000001/μ0000001/μ0000001/μσxxσyyσzzσxyσxzσyz
    E=2(1+v)μ
    E=3μ
    μ=ρcs2
    μ˜(ω)=μs(ω)+iμl(ω)
    c^s(ω)=μ˜(ω)ρ
    k˜(ω)=ωc^s(ω)=ωμ˜(ω)ρ
    k˜(ω)=β(ω)-iα(ω)=ωcPh(ω)-iα(ω)
    ux2(x1,t)=1x1Nexpiωt-k˜(ω)x1=1x1Nexpiωt-β(ω)x1exp-α(ω)x1
    μs(ω)=ρω2β(ω)2-α(ω)2β(ω)2+α(ω)22μl(ω)=2ρω2β(ω)α(ω)β(ω)2+α(ω)22
    μ˜(ω)=G0+iωη
    cPh(ω)=c01211+ω2ω021+ω2ω02+1-12
    α(ω)=ωc01211+ω2ω021+ω2ω02-112
    E=σyyεyy
    md2x(t)dt2+Rdx(t)dt+kx(t)=F(t)
    x(t)=Bexp-R2mtcos(2πft+Φ)
    f=12πkm-R24m2
    k=4πmf2
    σij=δijΛεij+2μεij
    M=μ(3Λ+2μ)Λ+μ
    ν=Λ2(Λ+μ)=M2μ-1
    ρ2uxt2=σxxx+σxyy+σxzz
    ρ2uxt2-(Λ+μ)εx-μ2ux=0
    ρ2ut2=(Λ+μ)graddiv(u)+μΔ2u
    u=ul+us=gradφ+rotψ
    2ult2-cl22ul=0
    cl=(Λ+2μ)/ρ
    2ust2-cs22us=0
    cs=μ/ρ
    cp=Mρ
    M=K+4μ3
    ul=Aexp-kT2-ks2yexp(-jkTx)
    us=Bexp-kT2-ks2yexp(-jkTx)
    (β2-γT2)+4β2γLγT=0
    ηkTβ=cSWcT(1)
    ξ=kLkTcTcL
    η6-8η4+8(3-2ξ2)η2-16(1-ξ2)=0
    η=0.95531.9661-0.5672i1.9661+0.5672i
    cRcs(0.87+1.12ν)(1+ν)-1
    cSc0.846cs
    Λ=(k2+β2)sinhαH22kβsinhβH2(k2+β2)coshαH22kβcoshβH202kαcoshαH2(k2+β2)coshβH22kαsinhαH2(k2+β2)sinhβH20-(k2+β2)sinhαH2-2kβsinhβH2(k2+β2)sinhαH22kβcoshβH2ρFω2ρcs22kαcoshαH2(k2+β2)coshβH22kαsinhαH2-(k2+β2)sinhβH20αcoshαH2kcoshβH2-αsinhαH2-ksinhβH2-αF
    Yirui Zhu, Jiulin Shi, Lingkai Huang, Lihua Fang, Tomas E. Gomez Alvarez-Arenas, Xingdao He. Advances in Optical Coherence Elastography and Its Applications[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0200002
    Download Citation