[1] Frank R[M]. The genuine works of hippocrates(1939).
[2] Ophir J, Céspedes I, Ponnekanti H et al. Elastography: a quantitative method for imaging the elasticity of biological tissues[J]. Ultrasonic Imaging, 13, 111-134(1991).
[3] Sarvazyan A P, Rudenko O V, Swanson S D et al. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics[J]. Ultrasound in Medicine & Biology, 24, 1419-1435(1998).
[4] Palmeri M L, Nightingale K R. Acoustic radiation force-based elasticity imaging methods[J]. Interface Focus, 1, 553-564(2011).
[5] Doherty J R, Trahey G E, Nightingale K R et al. Acoustic radiation force elasticity imaging in diagnostic ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60, 685-701(2013).
[6] Nightingale K R, Palmeri M L, Nightingale R W et al. On the feasibility of remote palpation using acoustic radiation force[J]. The Journal of the Acoustical Society of America, 110, 625-634(2001).
[7] Nightingale K, Soo M S, Nightingale R et al. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility[J]. Ultrasound in Medicine & Biology, 28, 227-235(2002).
[8] Nightingale K, McAleavey S, Trahey G. Shear-wave generation using acoustic radiation force: in vivo and ex vivo results[J]. Ultrasound in Medicine & Biology, 29, 1715-1723(2003).
[9] Konofagou E E, Hynynen K. Localized harmonic motion imaging: theory, simulations and experiments[J]. Ultrasound in Medicine & Biology, 29, 1405-1413(2003).
[10] Ma T, Qian X J, Chiu C T et al. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization[J]. Quantitative Imaging in Medicine and Surgery, 5, 108-117(2015).
[11] Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51, 396-409(2004).
[12] Venkatesh S K, Yin M, Ehman R L. Magnetic resonance elastography of liver: technique, analysis, and clinical applications[J]. Journal of Magnetic Resonance Imaging, 37, 544-555(2013).
[13] Kruse S A, Rose G H, Glaser K J et al. Magnetic resonance elastography of the brain[J]. NeuroImage, 39, 231-237(2008).
[14] Muthupillai R, Lomas D J, Rossman P J et al. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves[J]. Science, 269, 1854-1857(1995).
[15] Mariappan Y K, Glaser K J, Ehman R L. Magnetic resonance elastography: a review[J]. Clinical Anatomy, 23, 497-511(2010).
[16] Low G, Kruse S A, Lomas D J. General review of magnetic resonance elastography[J]. World Journal of Radiology, 8, 59-72(2016).
[17] Manduca A, Oliphant T E, Dresner M A et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity[J]. Medical Image Analysis, 5, 237-254(2001).
[18] Huwart L, Sempoux C, Vicaut E et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis[J]. Gastroenterology, 135, 32-40(2008).
[19] Hiscox L V, Johnson C L, Barnhill E et al. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications[J]. Physics in Medicine and Biology, 61, R401-R437(2016).
[20] Hoodeshenas S, Yin M, Venkatesh S K. Magnetic resonance elastography of liver: current update[J]. Topics in Magnetic Resonance Imaging, 27, 319-333(2018).
[21] Nakadate S, Yatagai T, Saito H. Electronic speckle pattern interferometry using digital image processing techniques[J]. Applied Optics, 19, 1879-1883(1980).
[22] Francis D, Tatam R P, Groves R M. Shearography technology and applications: a review[J]. Measurement Science and Technology, 21, 102001(2010).
[23] Kirkpatrick S J, Brooks B W. Micromechanical behavior of cortical bone as inferred from laser speckle data[J]. Journal of Biomedical Materials Research, 39, 373-379(1998).
[24] Jacques S L, Kirkpatrick S J. Acoustically modulated speckle imaging of biological tissues[J]. Optics Letters, 23, 879-881(1998).
[25] Kirkpatrick S J, Cipolla M J. High resolution imaged laser speckle strain gauge for vascular applications[J]. Journal of Biomedical Optics, 5, 62-71(2000).
[26] Kirkpatrick S J, Wang R K, Duncan D D et al. Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography[J]. Optics Express, 14, 9770-9779(2006).
[27] Tearney G J, Bouma B E. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis[J]. Optics Letters, 27, 533-535(2002).
[28] Scarcelli G, Yun S H. Confocal Brillouin microscopy for three-dimensional mechanical imaging[J]. Nature Photonics, 2, 39-43(2007).
[29] Scarcelli G, Polacheck W J, Nia H T et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy[J]. Nature Methods, 12, 1132-1134(2015).
[30] Wu P J, Kabakova I V, Ruberti J W et al. Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials[J]. Nature Methods, 15, 561-562(2018).
[31] Prevedel R, Diz-Muñoz A, Ruocco G et al. Brillouin microscopy: an emerging tool for mechanobiology[J]. Nature Methods, 16, 969-977(2019).
[32] Scarcelli G, Besner S, Pineda R et al. In vivo biomechanical mapping of normal and keratoconus corneas[J]. JAMA Ophthalmology, 133, 480-482(2015).
[33] Scarcelli G, Kim P, Yun S H. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy[J]. Biophysical Journal, 101, 1539-1545(2011).
[34] Antonacci G, de Turris V, Rosa A et al. Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS[J]. Communications Biology, 1, 139(2018).
[35] Bevilacqua C, Sánchez-Iranzo H, Richter D et al. Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy[J]. Biomedical Optics Express, 10, 1420-1431(2019).
[36] Yun S H, Chernyak D. Brillouin microscopy: assessing ocular tissue biomechanics[J]. Current Opinion in Ophthalmology, 29, 299-305(2018).
[37] Ballmann C W, Thompson J V, Traverso A J et al. Stimulated Brillouin scattering microscopic imaging[J]. Scientific Reports, 5, 18139(2015).
[38] Yang F, Bevilacqua C, Hambura S et al. Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens[J]. Nature Methods, 20, 1971-1979(2023).
[39] Keshmiri H, Cikes D, Samalova M et al. Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells[J]. Nature Photonics, 18, 276-285(2024).
[40] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012).
[41] Upputuri P K, Pramanik M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review[J]. Journal of Biomedical Optics, 22, 041006(2017).
[42] Gao G D, Yang S H, Xing D. Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement[J]. Optics Letters, 36, 3341-3343(2011).
[43] Singh M S, Jiang H B. Elastic property attributes to photoacoustic signals: an experimental phantom study[J]. Optics Letters, 39, 3970-3973(2014).
[44] Singh M S, Jiang H B. Ultrasound (US) transducer of higher operating frequency detects photoacoustic (PA) signals due to the contrast in elastic property[J]. AIP Advances, 6, 025210(2016).
[45] Kennedy B F, Bamber J C. Introduction to optical coherence elastography[M]. Optical coherence elastography, 1-1-1-32(2021).
[46] Kennedy B F, Kennedy K M, Sampson D D. A review of optical coherence elastography: fundamentals, techniques and prospects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 7101217(2014).
[47] Kennedy B F, Wijesinghe P, Sampson D D. The emergence of optical elastography in biomedicine[J]. Nature Photonics, 11, 215-221(2017).
[48] Wang S, Larin K V. Optical coherence elastography for tissue characterization: a review[J]. Journal of Biophotonics, 8, 279-302(2015).
[49] Schmitt J. OCT elastography: imaging microscopic deformation and strain of tissue[J]. Optics Express, 3, 199-211(1998).
[50] Fang Q, Krajancich B, Chin L et al. Handheld probe for quantitative micro-elastography[J]. Biomedical Optics Express, 10, 4034-4049(2019).
[51] Leitgeb R, Hitzenberger C, Fercher A. Performance of Fourier domain vs time domain optical coherence tomography[J]. Optics Express, 11, 889-894(2003).
[52] Wang R K, Kirkpatrick S, Hinds M. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time[J]. Applied Physics Letters, 90, 164105(2007).
[53] Wang R K, Ma Z H, Kirkpatrick S J. Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue[J]. Applied Physics Letters, 89, 144103(2006).
[54] Kirkpatrick S J, Wang R K, Duncan D D. OCT-based elastography for large and small deformations[J]. Optics Express, 14, 11585-11597(2006).
[55] Hepburn M S, Foo K Y, Wijesinghe P et al. Speckle-dependent accuracy in phase-sensitive optical coherence tomography[J]. Optics Express, 29, 16950-16968(2021).
[56] Kennedy B F, Koh S H, McLaughlin R A et al. Strain estimation in phase-sensitive optical coherence elastography[J]. Biomedical Optics Express, 3, 1865-1879(2012).
[57] Kennedy B F, Malheiro F G, Chin L et al. Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans[J]. Journal of Biomedical Optics, 19, 076006(2014).
[58] Zaitsev V Y, Matveyev A L, Matveev L A et al. Strain and elasticity imaging in compression optical coherence elastography: the two-decade perspective and recent advances[J]. Journal of Biophotonics, 14, e202000257(2021).
[59] Wu C, Han Z L, Wang S et al. Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system[J]. Investigative Ophthalmology & Visual Science, 56, 1292-1300(2015).
[60] Zhu J, Qi L, Miao Y S et al. 3D mapping of elastic modulus using shear wave optical micro-elastography[J]. Scientific Reports, 6, 35499(2016).
[61] Wang S, Larin K V, Li J S et al. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity[J]. Laser Physics Letters, 10, 075605(2013).
[62] Kirby M A, Pelivanov I, Song S Z et al. Optical coherence elastography in ophthalmology[J]. Journal of Biomedical Optics, 22, 121720(2017).
[63] Zhu Y R, Shi J L, Alvarez-Arenas T E G et al. Noncontact longitudinal shear wave imaging for the evaluation of heterogeneous porcine brain biomechanical properties using optical coherence elastography[J]. Biomedical Optics Express, 14, 5113-5126(2023).
[64] Kennedy K M, Chin L, McLaughlin R A et al. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography[J]. Scientific Reports, 5, 15538(2015).
[65] Zaitsev V Y, Matveyev A L, Matveev L A et al. Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues[J]. Journal of Innovative Optical Health Sciences, 10, 1742006(2017).
[66] Gubarkova E V, Sovetsky A A, Zaitsev V Y et al. OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes[J]. Biomedical Optics Express, 10, 2244-2263(2019).
[67] Gubarkova E V, Kiseleva E B, Sirotkina M A et al. Diagnostic accuracy of cross-polarization OCT and OCT-elastography for differentiation of breast cancer subtypes: comparative study[J]. Diagnostics, 10, 994(2020).
[68] Barr R G, Nakashima K, Amy D et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 2: breast[J]. Ultrasound in Medicine & Biology, 41, 1148-1160(2015).
[69] Hawley J R, Kalra P, Mo X K et al. Quantification of breast stiffness using MR elastography at 3 tesla with a soft sternal driver: a reproducibility study[J]. Journal of Magnetic Resonance Imaging, 45, 1379-1384(2017).
[70] Allen W M, Kennedy K M, Fang Q et al. Wide-field quantitative micro-elastography of human breast tissue[J]. Biomedical Optics Express, 9, 1082-1096(2018).
[71] Plodinec M, Loparic M, Monnier C A et al. The nanomechanical signature of breast cancer[J]. Nature Nanotechnology, 7, 757-765(2012).
[72] Zvietcovich F, Larin K V. Wave-based optical coherence elastography: the 10-year perspective[J]. Progress in Biomedical Engineering, 4, 012007(2022).
[73] Kennedy K M, Kennedy B F, McLaughlin R A et al. Needle optical coherence elastography for tissue boundary detection[J]. Optics Letters, 37, 2310-2312(2012).
[74] Kennedy K M, McLaughlin R A, Kennedy B F et al. Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues[J]. Journal of Biomedical Optics, 18, 121510(2013).
[75] Nahas A, Bauer M, Roux S et al. 3D static elastography at the micrometer scale using Full Field OCT[J]. Biomedical Optics Express, 4, 2138-2149(2013).
[76] Liang X, Boppart S A. Biomechanical properties of in vivo human skin from dynamic optical coherence elastography[J]. IEEE Transactions on Bio-Medical Engineering, 57, 953-959(2010).
[77] Zhu Y R, Zhang Y B, Shi G et al. Quantification of iris elasticity using acoustic radiation force optical coherence elastography[J]. Applied Optics, 59, 10739-10745(2020).
[78] Zhu Y R, Zhao Y Z, Shi J L et al. Novel acoustic radiation force optical coherence elastography based on ultrasmall ultrasound transducer for biomechanics evaluation of in vivo cornea[J]. Journal of Biophotonics, 16, e202300074(2023).
[79] Kirby M A, Zhou K H, Pitre J J et al. Spatial resolution in dynamic optical coherence elastography[J]. Journal of Biomedical Optics, 24, 096006(2019).
[80] Miller D L, Abo A, Abramowicz J S et al. Diagnostic ultrasound safety review for point-of-care ultrasound practitioners[J]. Journal of Ultrasound in Medicine, 39, 1069-1084(2020).
[81] Li J S, Wang S, Singh M et al. Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo[J]. Laser Physics Letters, 11, 065601(2014).
[82] Das S, Schill A, Liu C H et al. Laser-induced elastic wave classification: thermoelastic versus ablative regimes for all-optical elastography applications[J]. Journal of Biomedical Optics, 25, 035004(2020).
[83] Li C H, Guan G, Huang Z et al. Noncontact all-optical measurement of corneal elasticity[J]. Optics Letters, 37, 1625-1627(2012).
[84] Li C H, Guan G Y, Zhang F et al. Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application[J]. Biomedical Optics Express, 5, 1403-1419(2014).
[85] Boerner P, Nevozhay D, Hatamimoslehabadi M et al. Repetitive optical coherence elastography measurements with blinking nanobombs[J]. Biomedical Optics Express, 11, 6659-6673(2020).
[86] Torr G R. The acoustic radiation force[J]. American Journal of Physics, 52, 402-408(1984).
[87] Jin Z, Khazaeinezhad R, Zhu J et al. In-vivo 3D corneal elasticity using air-coupled ultrasound optical coherence elastography[J]. Biomedical Optics Express, 10, 6272-6285(2019).
[88] Zvietcovich F, Nair A, Ambekar Y S et al. Confocal air-coupled ultrasonic optical coherence elastography probe for quantitative biomechanics[J]. Optics Letters, 45, 6567-6570(2020).
[89] Ahmad A, Kim J, Sobh N A et al. Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves[J]. Biomedical Optics Express, 5, 2349-2361(2014).
[90] Huang P C, Pande P, Ahmad A et al. Magnetomotive optical coherence elastography for magnetic hyperthermia dosimetry based on dynamic tissue biomechanics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 6802816(2016).
[91] Wu C, Singh M, Han Z L et al. Lorentz force optical coherence elastography[J]. Journal of Biomedical Optics, 21, 090502(2016).
[92] Nguyen T M, Zorgani A, Lescanne M et al. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography[J]. Journal of Biomedical Optics, 21, 126013(2016).
[93] Nair A, Singh M, Aglyamov S R et al. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography[J]. Journal of Biomedical Optics, 25, 1-9(2020).
[94] Li P, Liu A P, Shi L et al. Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography[J]. Physics in Medicine and Biology, 56, 7081-7092(2011).
[95] Podoleanu A G. Optical coherence tomography[J]. Journal of Microscopy, 247, 209-219(2012).
[96] Song S Z, Wei W, Hsieh B Y et al. Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate[J]. Applied Physics Letters, 108, 191104(2016).
[97] Singh M, Wu C, Liu C H et al. Phase-sensitive optical coherence elastography at 1.5 million a-lines per second[J]. Optics Letters, 40, 2588-2591(2015).
[98] Marmin A, Catheline S, Nahas A. Full-field passive elastography using digital holography[J]. Optics Letters, 45, 2965-2968(2020).
[99] Zvietcovich F, Pongchalee P, Meemon P et al. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers[J]. Nature Communications, 10, 4895(2019).
[100] Graff K F[M]. Wave motion in elastic solids(2012).
[101] Han Z L, Li J S, Singh M et al. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model[J]. Journal of the Mechanical Behavior of Biomedical Materials, 66, 87-94(2017).
[102] Ramier A, Tavakol B, Yun S H. Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography[J]. Optics Express, 27, 16635-16649(2019).
[103] Garteiser P, Doblas S, Daire J L et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation[J]. European Radiology, 22, 2169-2177(2012).
[104] Zhang M, Nigwekar P, Castaneda B et al. Quantitative characterization of viscoelastic properties of human prostate correlated with histology[J]. Ultrasound in Medicine & Biology, 34, 1033-1042(2008).
[105] Szabo T L, Wu J. A model for longitudinal and shear wave propagation in viscoelastic media[J]. The Journal of the Acoustical Society of America, 107, 2437-2446(2000).
[106] Carstensen E L, Parker K J. Physical models of tissue in shear fields[J]. Ultrasound in Medicine & Biology, 40, 655-674(2014).
[107] Zhang H M, Zhang Q Z, Ruan L T et al. Modeling ramp-hold indentation measurements based on kelvin-Voigt fractional derivative model[J]. Measurement Science & Technology, 29, 035701(2018).
[108] Zvietcovich F, Rolland J P, Parker K J. An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model[J]. Journal of Innovative Optical Health Sciences, 10, 1742008(2017).
[109] Leartprapun N, Iyer R, Adie S G. Model-independent quantification of soft tissue viscoelasticity with dynamic optical coherence elastography[J]. Proceedings of SPIE, 10053, 1005322(2017).
[110] Zhang X M. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique[J]. The Journal of the Acoustical Society of America, 140, 3619-3622(2016).
[111] Wang Y, Shemonski N D, Adie S G et al. Dynamic method of optical coherence elastography in determining viscoelasticity of polymers and tissues[C], 117-120(2013).
[112] Aglyamov S R, Wang S, Karpiouk A B et al. The dynamic deformation of a layered viscoelastic medium under surface excitation[J]. Physics in Medicine and Biology, 60, 4295-4312(2015).
[113] Orescanin M, Toohey K S, Insana M F. Material properties from acoustic radiation force step response[J]. The Journal of the Acoustical Society of America, 125, 2928-2936(2009).
[114] Liang X, Adie S G, John R et al. Dynamic spectral-domain optical coherence elastography for tissue characterization[J]. Optics Express, 18, 14183-14190(2010).
[115] Qi W J, Li R, Ma T et al. Resonant acoustic radiation force optical coherence elastography[J]. Applied Physics Letters, 103, 103704(2013).
[116] Novatsky[M]. Teoriya uprugosti (theory of elasticity), 872(1975).
[117] Nazarchuk Z, Skalskyi V, Serhiyenko O. Analysis of acoustic emission caused by internal cracks[M]. Foundations of engineering mechanics, 75-105(2017).
[118] Levy M, Bass H E. Handbook of elastic properties of solids, liquids, and gases[J]. The Journal of the AcousticalSociety of America, 116, 15-17(2004).
[119] Catheline S, Benech N. Longitudinal shear wave and transverse dilatational wave in solids[J]. The Journal of the Acoustical Society of America, 137, EL200-EL205(2015).
[120] Carstensen E L, Parker K J. Erratum: oestreicher and elastography[J. acoust. soc. Am. 138, 2317-2325 (2015)[J]. The Journal of the Acoustical Society of America, 143, 180(2018).
[121] Zvietcovich F, Ge G R, Mestre H et al. Longitudinal shear waves for elastic characterization of tissues in optical coherence elastography[J]. Biomedical Optics Express, 10, 3699-3718(2019).
[122] Zhu J, Miao Y S, Qi L et al. Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography[J]. Applied Physics Letters, 110, 201101(2017).
[123] Zhu J, Yu J X, Qu Y Q et al. Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography[J]. Optics Letters, 43, 2388-2391(2018).
[124] Liu C H, Nevozhay D, Schill A et al. Nanobomb optical coherence elastography[J]. Optics Letters, 43, 2006-2009(2018).
[125] Liu C H, Nevozhay D, Zhang H Q et al. Longitudinal elastic wave imaging using nanobomb optical coherence elastography[J]. Optics Letters, 44, 3162-3165(2019).
[126] Viktorov I A[M]. Rayleigh and Lamb waves: physical theory and applications(1967).
[127] Zhu Y R, Shi J L, Alvarez-Arenas T E G et al. Supershear Rayleigh wave imaging for quantitative assessment of biomechanical properties of brain using air-coupled optical coherence elastography[J]. APL Bioengineering, 7, 046107(2023).
[128] Nenadic I Z, Urban M W, Aristizabal S et al. On Lamb and Rayleigh wave convergence in viscoelastic tissues[J]. Physics in Medicine and Biology, 56, 6723-6738(2011).
[129] Pitre J J, Jr, Kirby M A, Li D S et al. Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE[J]. Scientific Reports, 10, 12983(2020).
[130] Ambroziński Ł, Song S Z, Yoon S J et al. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity[J]. Scientific Reports, 6, 38967(2016).
[131] de Stefano V S, Ford M R, Seven I et al. Depth-dependent corneal biomechanical properties in normal and keratoconic subjects by optical coherence elastography[J]. Translational Vision Science & Technology, 9, 4(2020).
[132] Padmanabhan P, Elsheikh A. Keratoconus: a biomechanical perspective[J]. Current Eye Research, 48, 121-129(2023).
[133] Zhao Y, Zhu Y, Wang Y et al. Quantitative evaluation of in vivo corneal biomechanical properties after SMILE and FLEx surgery by acoustic radiation force optical coherence elastography[J]. Sensors, 23, 181(2022).
[134] Singh M, Li J S, Han Z L et al. Evaluating the effects of riboflavin/UV-a and rose-Bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography[J]. Investigative Ophthalmology & Visual Science, 57, OCT112-OCT120(2016).
[135] Singh M, Li J S, Han Z L et al. Assessing the effects of riboflavin/UV-a crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography[J]. Biomedical Optics Express, 8, 349-366(2016).
[136] Zhu Y, Zhao Y, Zhang Y et al. In vivo evaluation of the effects of SMILE with different amounts of stromal ablation on corneal biomechanics by optical coherence elastography[J]. Diagnostics, 13, 30(2022).
[137] Ramier A, Eltony A M, Chen Y T et al. In vivo measurement of shear modulus of the human cornea using optical coherence elastography[J]. Scientific Reports, 10, 17366(2020).
[138] Lan G P, Aglyamov S R, Larin K V et al. In vivo human corneal shear-wave optical coherence elastography[J]. Optometry and Vision Science, 98, 58-63(2021).
[139] Jin Z, Chen S S, Dai Y Y et al. In vivo noninvasive measurement of spatially resolved corneal elasticity in human eyes using Lamb wave optical coherence elastography[J]. Journal of Biophotonics, 13, e202000104(2020).
[140] Li G Y, Feng X, Yun S H. In vivo optical coherence elastography unveils spatial variation of human corneal stiffness[J]. IEEE Transactions on Biomedical Engineering, 71, 1418-1429(2024).
[141] Wu C, Aglyamov S R, Han Z L et al. Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography[J]. Biomedical Optics Express, 9, 6455-6466(2018).
[142] Li Y, Zhu J, Chen J J et al. Simultaneously imaging and quantifying in vivo mechanical properties of crystalline lens and cornea using optical coherence elastography with acoustic radiation force excitation[J]. APL Photonics, 4, 106104(2019).
[143] He Y M, Qu Y Q, Zhu J et al. Confocal shear wave acoustic radiation force optical coherence elastography for imaging and quantification of the in vivo posterior eye[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 7200107(2019).
[144] Qu Y Q, He Y M, Zhang Y et al. Quantified elasticity mapping of retinal layers using synchronized acoustic radiation force optical coherence elastography[J]. Biomedical Optics Express, 9, 4054-4063(2018).
[145] Zhang F Y, Li R Z, Li Y et al. Quantitative optical coherence elastography of the optic nerve head in vivo[J]. IEEE Transactions on Biomedical Engineering, 71, 732-737(2024).
[146] Gong Z Y, Bojikian K D, Chen A et al. In-vivo characterization of scleral rigidity in myopic eyes using fundus-pulsation optical coherence elastography[J]. Biomedical Optics Express, 15, 3426-3440(2024).
[147] Zvietcovich F, Nair A, Singh M et al. Dynamic optical coherence elastography of the anterior eye: understanding the biomechanics of the limbus[J]. Investigative Ophthalmology & Visual Science, 61, 7(2020).
[148] Zhou Y H, Wang Y Y, Shen M X et al. In vivo evaluation of corneal biomechanical properties by optical coherence elastography at different cross-linking irradiances[J]. Journal of Biomedical Optics, 24, 105001(2019).
[149] Zvietcovich F, Nair A, Singh M et al. In vivo assessment of corneal biomechanics under a localized cross-linking treatment using confocal air-coupled optical coherence elastography[J]. Biomedical Optics Express, 13, 2644-2654(2022).
[150] Zhao Y Z, Yang H W, Li Y J et al. Quantitative assessment of biomechanical properties of the human keratoconus cornea using acoustic radiation force optical coherence elastography[J]. Translational Vision Science & Technology, 11, 4(2022).
[151] Han X, Zhang Y B, Zhu Y R et al. Quantification of biomechanical properties of human corneal scar using acoustic radiation force optical coherence elastography[J]. Experimental Biology and Medicine, 247, 462-469(2022).
[152] Kirby M A, Regnault G, Pelivanov I et al. Noncontact acoustic micro-tapping optical coherence elastography for quantification of corneal anisotropic elasticity: in vivo rabbit study[J]. Translational Vision Science & Technology, 12, 15(2023).
[153] Thaware O C, Pavlatos E, Ni S B et al. Application of optical coherence elastography for corneal stiffness measurement[J]. Investigative Ophthalmology & Visual Science, 63, A0197(2022).
[154] Wang Y D, Zhang Y B, Shi G et al. Evaluation of residual corneal stromal bed elasticity by optical coherence elastography based on acoustic radiation force[J]. Photonics, 10, 266(2023).
[155] Qiu R, Fan F, Chen X Y et al. Whole-eye acoustic radiation force optical coherence elastography with an electrically tunable lens[J]. Proceedings of SPIE, 12770, 127702D(2023).
[156] Jin Z, Zhou Y H, Shen M X et al. Assessment of corneal viscoelasticity using elastic wave optical coherence elastography[J]. Journal of Biophotonics, 13, e201960074(2020).
[157] Kazaili A, Lawman S, Geraghty B et al. Line-Field Optical Coherence Tomography as a tool for in vitro characterization of corneal biomechanics under physiological pressures[J]. Scientific Reports, 9, 6321(2019).
[158] Sit A J, Lin S C, Kazemi A et al. In vivo noninvasive measurement of Young’s modulus of elasticity in human eyes: a feasibility study[J]. Journal of Glaucoma, 26, 967-973(2017).
[159] Lam A K C, Hon Y, Leung L K K et al. Repeatability of a novel corneal indentation device for corneal biomechanical measurement[J]. Ophthalmic and Physiological Optics, 35, 455-461(2015).
[160] Zhang H, Singh M, Zvietcovich F et al. Age-related changes in the viscoelasticity of rabbit lens characterised by surface wave dispersion analysis[J]. Quantum Electronics, 52, 42-47(2022).
[161] Ambekar Y, Singh M, Zhang J T et al. Characterization of biomechanical properties of crystalline lens using Brillouin microscopy and optical coherence elastography[J]. Proceedings of SPIE, 11218, 112180T(2020).
[162] Zhang H Q, Nair A, Aglyamov S R et al. Mechanical changes of the crystalline lens in oxidative cataractogenesis assessed with optical coherence elastography[J]. Proceedings of SPIE, 11242, 112420W(2020).
[163] Zhang H Q, Wu C, Singh M et al. Optical coherence elastography of cold cataract in porcine lens[J]. Journal of Biomedical Optics, 24, 036004(2019).
[164] Ambekar Y S, Singh M, Zhang J T et al. Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy[J]. Biomedical Optics Express, 11, 2041-2051(2020).
[165] Qian X J, Li R Z, Li Y et al. In vivo evaluation of posterior eye elasticity using shaker-based optical coherence elastography[J]. Experimental Biology and Medicine, 245, 282-288(2020).
[166] Viñas M, Feng X, Li G Y et al. Investigating scleral crosslinking to stop myopia progression using optical coherence elastography[J]. Proceedings of SPIE, 11962, 1196202(2022).
[167] Luo J H, Zhang Y B, Ai S Z et al. Two-dimensional elastic distribution imaging of the sclera using acoustic radiation force optical coherence elastography[J]. Journal of Biophotonics, 17, e202300368(2024).
[168] Vinas-Pena M, Feng X, Li G Y et al. In situ measurement of the stiffness increase in the posterior sclera after UV-riboflavin crosslinking by optical coherence elastography[J]. Biomedical Optics Express, 13, 5434-5446(2022).
[169] Qu Y Q, He Y M, Saidi A et al. In vivo elasticity mapping of posterior ocular layers using acoustic radiation force optical coherence elastography[J]. Investigative Ophthalmology & Visual Science, 59, 455-461(2018).
[170] Song S Z, Le N M, Huang Z H et al. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source[J]. Optics Letters, 40, 5007-5010(2015).
[171] Dewall R J. Ultrasound elastography: principles, techniques, and clinical applications[J]. Critical Reviews in Biomedical Engineering, 41, 1-19(2013).
[172] Zaleska-Dorobisz U, Pawluś A, Szymańska K et al. Ultrasound elastography: review of techniques and its clinical applications in pediatrics: part 2[J]. Advances in Clinical and Experimental Medicine, 24, 725-730(2015).
[173] Pepin K M, Ehman R L, McGee K P. Magnetic resonance elastography (MRE) in cancer: technique, analysis, and applications[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 90/91, 32-48(2015).
[174] Yin Z C, He B, Chen Z Y et al. Optical coherence imaging for clinical applications[J]. Chinese Journal of Lasers, 51, 0907002(2024).
[175] Moran M S, Schnitt S J, Giuliano A E et al. Society of surgical oncology-American society for radiation oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer[J]. International Journal of Radiation Oncology Biology Physics, 88, 553-564(2014).
[176] Morrow M, van Zee K J, Solin L J et al. Society of surgical oncology-American society for radiation oncology-American society of clinical oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in ductal carcinoma in situ[J]. Practical Radiation Oncology, 6, 287-295(2016).
[177] Liang X, Oldenburg A L, Crecea V et al. Optical micro-scale mapping of dynamic biomechanical tissue properties[J]. Optics Express, 16, 11052-11065(2008).
[178] Srivastava A, Verma Y, Rao K D et al. Determination of elastic properties of resected human breast tissue samples using optical coherence tomographic elastography[J]. Strain, 47, 75-87(2011).
[179] Kennedy B F, McLaughlin R A, Kennedy K M et al. Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure[J]. Biomedical Optics Express, 5, 2113-2124(2014).
[180] Kennedy B F, McLaughlin R A, Kennedy K M et al. Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue[J]. Cancer Research, 75, 3236-3245(2015).
[181] Chin L, Latham B, Saunders C M et al. Simplifying the assessment of human breast cancer by mapping a micro-scale heterogeneity index in optical coherence elastography[J]. Journal of Biophotonics, 10, 690-700(2017).
[182] Kennedy K M, Zilkens R, Allen W M et al. Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery[J]. Cancer Research, 80, 1773-1783(2020).
[183] Plekhanov A A, Sirotkina M A, Sovetsky A A et al. Histological validation of in vivo assessment of cancer tissue inhomogeneity and automated morphological segmentation enabled by Optical Coherence Elastography[J]. Scientific Reports, 10, 11781(2020).
[184] Li C H, Guan G Y, Ling Y T et al. Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer[J]. Cancer Letters, 357, 121-128(2015).
[185] Ling Y T, Li C H, Zhou K H et al. Microscale characterization of prostate biopsies tissues using optical coherence elastography and second harmonic generation imaging[J]. Laboratory Investigation, 98, 380-390(2018).
[186] Nandy S, Salehi H S, Wang T H et al. Correlating optical coherence elastography based strain measurements with collagen content of the human ovarian tissue[J]. Biomedical Optics Express, 6, 3806-3811(2015).
[187] Escoffier C, de Rigal J, Rochefort A et al. Age-related mechanical properties of human skin: an in vivo study[J]. Journal of Investigative Dermatology, 93, 353-357(1989).
[188] Hinz T, Hoeller T, Wenzel J et al. Real-time tissue elastography as promising diagnostic tool for diagnosis of lymph node metastases in patients with malignant melanoma: a prospective single-center experience[J]. Dermatology, 226, 81-90(2013).
[189] Li C H, Guan G Y, Cheng X et al. Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography[J]. Optics Letters, 37, 722-724(2012).
[190] Kennedy B F, Liang X, Adie S G et al. In vivo three-dimensional optical coherence elastography[J]. Optics Express, 19, 6623-6634(2011).
[191] Li C, Guan G, Reif R et al. Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography[J]. Journal of the Royal Society, 9, 831-841(2012).
[192] Kennedy B F, Hillman T R, McLaughlin R A et al. In vivo dynamic optical coherence elastography using a ring actuator[J]. Optics Express, 17, 21762-21772(2009).
[193] Adie S G, Kennedy B F, Armstrong J J et al. Audio frequency in vivo optical coherence elastography[J]. Physics in Medicine and Biology, 54, 3129-3139(2009).
[194] Guo D Y, Liu K Y, Zhang H Y et al. Inverse SNR and complex-valued decorrelation OCTA real-time imaging based on GPU high-speed parallel computing[J]. Chinese Journal of Lasers, 51, 0907011(2024).
[195] Xu J J, Zhang Y X, Lan G P et al. Multi-parameter imaging analysis of pig skin burns based on fiber polarization-sensitive optical coherence tomography[J]. Chinese Journal of Lasers, 51, 0307110(2024).
[196] Kirby M A, Tang P J, Liou H C et al. Probing elastic anisotropy of human skin in vivo with light using non-contact acoustic micro-tapping OCE and polarization sensitive OCT[J]. Scientific Reports, 12, 3963(2022).
[197] Feng X, Li G Y, Ramier A et al. In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography[J]. Acta Biomaterialia, 146, 295-305(2022).
[198] Ko H J, Tan W, Stack R et al. Optical coherence elastography of engineered and developing tissue[J]. Tissue Engineering, 12, 63-73(2006).
[199] Crecea V, Graf B W, Kim T et al. High resolution phase-sensitive magnetomotive optical coherence microscopy for tracking magnetic microbeads and cellular mechanics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 6800907(2014).
[200] Qi W J, Chen R M, Chou L et al. Phase-resolved acoustic radiation force optical coherence elastography[J]. Journal of Biomedical Optics, 17, 110505(2012).
[201] Razani M, Luk T W H, Mariampillai A et al. Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples[J]. Biomedical Optics Express, 5, 895-906(2014).
[202] Qi W J, Li R, Ma T et al. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer[J]. Applied Physics Letters, 104, 123702(2014).
[203] Qiu Y, Wang Y H, Xu Y Q et al. Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties[J]. Biomedical Optics Express, 7, 688-700(2016).
[204] Yao X W, Li D W, Park H C et al. Ultra-sensitive optical coherence elastography using a high-dynamic-range force loading scheme for cervical rigidity assessment[J]. Biomedical Optics Express, 11, 688-698(2020).
[205] Fang Q, Curatolo A, Wijesinghe P et al. Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics[J]. Biomedical Optics Express, 8, 5127-5138(2017).
[206] Liu S, Zhu J, Chen X D et al. Video-guided handheld high-speed optical coherence tomography system[J]. Chinese Journal of Lasers, 51, 0907015(2024).
[207] Ambekar Y S, Singh M, Schill A W et al. Multimodal imaging system combining optical coherence tomography and Brillouin microscopy for neural tube imaging[J]. Optics Letters, 47, 1347-1350(2022).
[208] Ambekar Y S, Caiaffa C D, Wlodarczyk B J et al. Optical coherence tomography-guided Brillouin microscopy highlights regional tissue stiffness differences during anterior neural tube closure in the Mthfd1l murine mutant[J]. Development, 151, dev202475(2024).
[209] Nair A, Ambekar Y S, Zevallos-Delgado C et al. Multiple optical elastography techniques reveal the regulation of corneal stiffness by collagen XII[J]. Investigative Ophthalmology & Visual Science, 63, 24(2022).