• Laser & Optoelectronics Progress
  • Vol. 62, Issue 7, 0712003 (2025)
Rui Ma1, Borong Wu2, Baowen Li1, and Xinghui Li1、3、*
Author Affiliations
  • 1Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong , China
  • 2Chongqing University-University of Cincinnati Joint Co-op Institute, Chongqing University, Chongqing 400044, China
  • 3Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, Guangdong , China
  • show less
    DOI: 10.3788/LOP242214 Cite this Article Set citation alerts
    Rui Ma, Borong Wu, Baowen Li, Xinghui Li. Rotating Measurement Method for Inner Hole Parameters with Large Depth-to-Diameter Ratio Based on Spectral Confocal Principle[J]. Laser & Optoelectronics Progress, 2025, 62(7): 0712003 Copy Citation Text show less
    Measurement system for inner hole parameters based on spectral confocal principle. (a) Designed system; (b) spectral confocal principle; (c) helical scan trajectory; (d) solving perpendicularity; (e) fit the center coordinates
    Fig. 1. Measurement system for inner hole parameters based on spectral confocal principle. (a) Designed system; (b) spectral confocal principle; (c) helical scan trajectory; (d) solving perpendicularity; (e) fit the center coordinates
    Principle of circle fitting by spectral confocal data
    Fig. 2. Principle of circle fitting by spectral confocal data
    Measure device for inner hole parameters based on spectral confocal principle. (a) Front of measurement system; (b) back of measurement system
    Fig. 3. Measure device for inner hole parameters based on spectral confocal principle. (a) Front of measurement system; (b) back of measurement system
    Influence of rotation velocity on the scanning trajectory of the inner hole profile. (a) 20 (°)/s; (b) 40 (°)/s; (c) 80 (°)/s; (d) 200 (°)/s; (e) 400 (°)/s; (f) 800 (°)/s
    Fig. 4. Influence of rotation velocity on the scanning trajectory of the inner hole profile. (a) 20 (°)/s; (b) 40 (°)/s; (c) 80 (°)/s; (d) 200 (°)/s; (e) 400 (°)/s; (f) 800 (°)/s
    Influence of rotation velocity on measurement result of inner hole radius
    Fig. 5. Influence of rotation velocity on measurement result of inner hole radius
    Fitted radii of the inner holes
    Fig. 6. Fitted radii of the inner holes
    Distributions of fitted circle centers
    Fig. 7. Distributions of fitted circle centers
    Distribution of perpendicularities
    Fig. 8. Distribution of perpendicularities
    No.Sampling frequency /HzNumber of pointsRotating moduleMoving module
    Rotation velocity /[(°)·s-1Rotation angleRotation time /sMoving velocity /(mm·s-1Moving time /sMoving displacement /mm
    11001080020(+360°, -360°)×3108.02120240
    22001080040(+360°, -360°)×354.0460240
    34002160040(+360°, -360°)×354.0460240
    44001080080(+360°, -360°)×327.0830240
    510002700080(+360°, -360°)×327.0830240
    6100010800200(+360°, -360°)×310.82012240
    7200021600200(+360°, -360°)×310.82012240
    8200010800400(+360°, -360°)×35.4406240
    920007200600(+360°, -360°)×33.6604240
    1020005400800(+360°, -360°)×32.7803240
    Table 1. Experimental parameter setting of inner hole workpiece
    Rui Ma, Borong Wu, Baowen Li, Xinghui Li. Rotating Measurement Method for Inner Hole Parameters with Large Depth-to-Diameter Ratio Based on Spectral Confocal Principle[J]. Laser & Optoelectronics Progress, 2025, 62(7): 0712003
    Download Citation