• Optoelectronics Letters
  • Vol. 20, Issue 12, 705 (2024)
Anning ZHANG, Rui ZHAO, Xian WEI, Zhongcheng LIANG, and Zefeng HAN
DOI: 10.1007/s11801-024-3235-x Cite this Article
ZHANG Anning, ZHAO Rui, WEI Xian, LIANG Zhongcheng, HAN Zefeng. Design, fabrication and characteristics of optofluidic variable aperture based on electromagnetic-driving[J]. Optoelectronics Letters, 2024, 20(12): 705 Copy Citation Text show less
References

[1] LV J, ZHAO Q, DAI F, et al. Variable aperture panoramic imaging[J]. Multimedia tools and applications, 2018, 77(20): 26677-26695.

[2] ISHIDA K, NARUSE K, MIZOUCHI Y, et al. Variable immersion microscopy with a high numerical aperture[J]. Optics letters, 2021, 46(4): 856-859.

[3] DING Y, MENG X, YANG D. Numerical simulation of polydisperse dense particles transport in a random-orientated fracture with spatially variable apertures[J]. Colloids surfaces A: physicochemical and engineering aspects, 2021, 610: 125729.

[4] LIU C, WANG D, WANG Q H. Variable aperture with graded attenuation combined with adjustable focal length lens[J]. Optics express, 2019, 27(10): 14075-14084.

[5] SHEPPARD C J R, MATTHEWS H J. Imaging in high-aperture optical systems[J]. Journal of optical society of America A, 1987, 4(8): 1354-1360.

[6] PARK S, JANG J, LEE S, et al. Optical range-finding system using a single-image sensor with liquid crystal display aperture[J]. Optics letters, 2016, 41(22): 5154-5157.

[7] MEJIA Y, DIAZ U R. Measuring the principal planes and effective focal length of an optical imaging system[J]. Optical engineering, 2021, 60: 104105.

[8] JIANG Z, WANG D, ZHENG Y, et al. Continuous optical zoom microscopy imaging system based on liquid lenses[J]. Optics express, 2021, 29(13): 20322-20335.

[9] VALLONE G, ARBELAEZ D, ARAUJO D M, et al. Magnetic and mechanical analysis of a large aperture 15T cable test facility dipole magnet[J]. IEEE transactions on applied superconductivity, 2021, 31(5): 1-6.

[10] HONGBIN Y, GUANGYA Z, SIONG C F, et al. Optofluidic variable aperture[J]. Optics letters, 2008, 33(6): 548-550.

[11] MURADE C U, OH J M, ENDE V D, et al. Electrowetting driven optical switch and tunable aperture[J]. Optics express, 2011, 19(16): 15525-15531.

[12] MULLER P, FEUERSTEIN R, ZAPPE H. Integrated optofluidic iris[J]. Journal microelectromechanical systems, 2012, 21(5): 1156-1164.

[13] SEO H W, CHAE J B, HONG S J, et al. A tunable optical IRIS based on electromagnetic actuation for a high-performance mini/micro camera[J]. IEEE international conference on micro electro mechanical systems, 2014: 1147-1150.

[14] XU M, REN H, LIN Y H. Electrically actuated liquid iris[J]. Optics letters, 2015, 40(5): 831-834.

[15] LEE J, PARK Y, CHUNG S K. Multifunctional liquid lens for variable focus and aperture[J]. Sensors and actuators A-physical, 2019, 287: 177-184.

[16] ZHAO Z Z, KUANG F L, ZHANG N H, et al. Adaptive liquid lens with tunable aperture[J]. IEEE photonics technology letters, 2021, 33(23): 1297-1300.

[17] YU C C, HO J R, JOHN C J W. Tunable liquid iris actuated using electrowetting effect[J]. Optical engineering, 2014, 53(5): 057106.

[18] LI L, LIU C, WANG Q H. Electrowetting-based liquid iris[J]. IEEE photonics technology letters, 2013, 25(10): 989-991.

[19] TSAI C G, YEH J A. Circular dielectric liquid iris[J]. Optics letters, 2010, 35(14): 2484-2486.

[20] SEO H W, CHAE J B, HONGA S J, et al. Electromagnetically driven liquid iris[J]. Sensors and actuators A: physical, 2015, 231: 52-58.

ZHANG Anning, ZHAO Rui, WEI Xian, LIANG Zhongcheng, HAN Zefeng. Design, fabrication and characteristics of optofluidic variable aperture based on electromagnetic-driving[J]. Optoelectronics Letters, 2024, 20(12): 705
Download Citation