[4] LE Cun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278- 2324.
[5] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference onComputer Vision and Pattern Recognition, 2014: 580-587.
[6] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[7] Girshick R. Fast R-CNN[C]//IEEEInternational Conference on Computer Vision, 2015: 1440-1448.
[8] REN S Q, HE K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[9] LI Y, HE K, SUN J. R-FCN: Object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems, 2016: 379-387.
[10] LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
[11] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[12] Redmon J, Farhadi A. Yolov3: An incremental improvement[EB/OL]. (2018-04-08)[2018-09-07]. https://arxiv.org/abs/1804.02767
[13] ZHANG Y, SHEN Y L, ZHANG J. An improved Tiny-YOLOv3 pedestrian detection algorithm[J]. Optik, 2019(183): 17–23.
[14] DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet: Keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision. NJ: IEEE, 2019: 6569-6578.