• Advanced Photonics Nexus
  • Vol. 3, Issue 4, 046010 (2024)
Yuxuan Xiong1、2, Ting Jiang1、2, Hao Wu1、2、*, Zheng Gao1、2, Shaojun Zhou3, Zhao Ge1、2, Siqi Yan1、2, and Ming Tang1、2、*
Author Affiliations
  • 1Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Wuhan, China
  • 2Huazhong University of Science and Technology, School of Optical and Electronic Information, Next Generation Internet Access National Engineering Laboratory, Wuhan, China
  • 3Huazhong University of Science and Technology University, School of Mechanical Science and Engineering, Wuhan, China
  • show less
    DOI: 10.1117/1.APN.3.4.046010 Cite this Article Set citation alerts
    Yuxuan Xiong, Ting Jiang, Hao Wu, Zheng Gao, Shaojun Zhou, Zhao Ge, Siqi Yan, Ming Tang, "Multimode fiber speckle Stokes polarimeter," Adv. Photon. Nexus 3, 046010 (2024) Copy Citation Text show less
    References

    [1] Z. Yu et al. Experimental demonstration of polarization-dependent loss monitoring and compensation in stokes space for coherent optical PDM-OFDM. J. Lightwave Technol., 32, 4528-4533(2014).

    [2] R. Raney. Dual-polarized SAR and Stokes parameters. IEEE Geosci. Remote Sens. Lett., 3, 317-319(2006).

    [3] J. B. Breckinridge, B. R. Oppenheimer. Polarization effects in reflecting coronagraphs for white-light applications in astronomy. Astrophys. J., 600, 1091-1098(2004).

    [4] D. H. Goldstein. Polarized Light(2017).

    [5] R. M. A. Azzam. Stokes-vector and Mueller-matrix polarimetry [Invited]. J. Opt. Soc. Amer. A, 33, 1396(2016).

    [6] V. Gruev, R. Perkins, T. York. CCD polarization imaging sensor with aluminum nanowire optical filters. Opt. Express, 18, 19087(2010).

    [7] A. Andreou, Z. Kalayjian. Polarization imaging: principles and integrated polarimeters. IEEE Sens. J., 2, 566-576(2002).

    [8] D. Wen et al. Metasurface for characterization of the polarization state of light. Opt. Express, 23, 10272(2015).

    [9] F. Ding, Y. Chen, S. Bozhevolnyi. Metasurface-based polarimeters. Appl. Sci., 8, 594(2018).

    [10] J. Qu et al. Full-Stokes parameters detection enabled by a non-interleaved fiber-compatible metasurface. Opt. Express, 31, 20836(2023).

    [11] F. Alhassen et al. All-fiber acousto-optic polarization monitor. Opt. Lett., 32, 841(2007).

    [12] Y. Zhao et al. Three-core photonic crystal fiber for the in-line measurement of full-polarization states by multi-core polarization interference theory. Opt. Lett., 48, 3985(2023).

    [13] J. D. Arango et al. Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor. J. Phys. Conf. Ser., 2139, 012001(2021).

    [14] C. Zhu et al. Image reconstruction through a multimode fiber with a simple neural network architecture. Sci. Rep., 11, 896(2021).

    [15] D. L. Smith et al. Machine learning for sensing with a multimode exposed core fiber specklegram sensor. Opt. Express, 30, 10443(2022).

    [16] L. Cai, M. Wang, Y. Zhao. Investigation on refractive index sensing characteristics based on multimode fiber specklegram. Meas. Sci. Technol., 34, 015125(2023).

    [17] E. Fujiwara et al. Development of a tactile sensor based on optical fiber specklegram analysis and sensor data fusion technique. Sens. Actuators A, 263, 677-686(2017).

    [18] R. Hamid, M. I. Cheema. Use of machine learning in a speckle-based optical fiber sensor for temperature detection. Proc. SPIE, 12019, 120190J(2022).

    [19] H. Gao et al. Bending recognition based on learning enhanced fiber specklegram sensor. Meas. Sci. Technol., 34, 115125(2023).

    [20] G. Li et al. Deep learning based optical curvature sensor through specklegram detection of multimode fiber. Opt. Laser Technol., 149, 107873(2022).

    [21] Y. Liu et al. Bending recognition based on the analysis of fiber specklegrams using deep learning. Opt. Laser Technol., 131, 106424(2020).

    [22] R.-Z. Zhu et al. Magnetic field sensing based on multimode fiber specklegrams. J. Lightwave Technol., 39, 3614-3619(2021).

    [23] G. Wu et al. High-definition image transmission through dynamically perturbed multimode fiber by a self-attention based neural network. Opt. Lett., 48, 2764-2767(2023).

    [24] A. Newaz et al. Machine-learning-enabled multimode fiber specklegram sensors: a review. IEEE Sens. J., 23, 20937-20950(2023).

    [25] F. Feng et al. Ai-assisted spectrometer based on multi-mode optical fiber speckle patterns. Opt. Commun., 522, 128675(2022).

    [26] O. C. Inalegwu, R. E. G. Ii, J. Huang. A machine learning specklegram wavemeter (MaSWave) based on a short section of multimode fiber as the dispersive element. Sensors, 23, 4574(2023).

    [27] G. Huang et al. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. Opt. Express, 28, 9487-9500(2020).

    [28] S. Angelucci et al. Structured light enhanced machine learning for fiber bend sensing. Opt. Express, 32, 7882-7895(2024).

    [29] G. Wu et al. Optical scanning endoscope via a single multimode optical fiber. Opto-Electron. Sci., 3, 230041–1-230041–32(2024).

    [30] U. Kürüm et al. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array. Opt. Express, 27, 20965-20979(2019).

    [31] Y. Xiong et al. MMF-based polarization state measurement system with temperature resistance, 1-3(2023).

    [32] M. P. Mengüç, P. Yang, J. Ding, M. Francoeur, G. W. Kattawar. Maxwell’s equations for single-scattering partiles. Light, Plasmonics and Partiles, 21-42(2023).

    [33] A. R. Cuevas et al. Machine learning for turning optical fiber specklegram sensor into a spatially-resolved sensing system. Proof of concept. J. Lightwave Technol., 36, 3733-3738(2018).

    [34] A. Khan et al. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev., 53, 5455-5516(2020).

    [35] F. Sultana, A. Sufian, P. Dutta. Evolution of image segmentation using deep convolutional neural network: a survey. Knowl.-Based Syst., 201–202, 106062(2020).

    [36] M. Wei et al. Neural network based perturbation-location fiber specklegram sensing system towards applications with limited number of training samples. J. Lightwave Technol., 39, 6315-6326(2021).

    [37] H. G. Berry, G. Gabrielse, A. E. Livingston. Measurement of the Stokes parameters of light. Appl. Opt., 16, 3200(1977).

    [38] J. A. Jones et al. The Poincaré-sphere approach to polarization: formalism and new labs with Poincaré beams. Amer. J. Phys., 84, 822-835(2016).

    [39] H. Hu, T. Liu, X. Li. Measurement and Imaging Processing of Polarization Information(2022).

    Yuxuan Xiong, Ting Jiang, Hao Wu, Zheng Gao, Shaojun Zhou, Zhao Ge, Siqi Yan, Ming Tang, "Multimode fiber speckle Stokes polarimeter," Adv. Photon. Nexus 3, 046010 (2024)
    Download Citation