Xiaohao Xu, Wenyu Gao, Tianyue Li, Tianhua Shao, Xingyi Li, Yuan Zhou, Geze Gao, Guoxi Wang, Shaohui Yan, Shuming Wang, Baoli Yao. Metasurfaces-Empowered Optical Micromanipulation (Invited)[J]. Acta Optica Sinica, 2024, 44(5): 0500001

Search by keywords or author
- Acta Optica Sinica
- Vol. 44, Issue 5, 0500001 (2024)
![Physical mechanisms of various types of metasurfaces. (a) Schematic of generalized Snell's law of refraction and reflection[73]; (b) plasmonic metasurface based on resonant phase[48,73]; (c) principle of generating geometric phase and implementation of geometric phase metasurfaces using gratings and metal antennas[74-75]; (d) metasurface based on propagation phase[76]; (e) metasurface based on detour phase[77-79]](/richHtml/gxxb/2024/44/5/0500001/img_01.jpg)
Fig. 1. Physical mechanisms of various types of metasurfaces. (a) Schematic of generalized Snell's law of refraction and reflection[73]; (b) plasmonic metasurface based on resonant phase[48,73]; (c) principle of generating geometric phase and implementation of geometric phase metasurfaces using gratings and metal antennas[74-75]; (d) metasurface based on propagation phase[76]; (e) metasurface based on detour phase[77-79]
![A few types of metasurface-based optical tweezers. (a) Geometric phase-based metasurface optical tweezers[101]; (b) geometric phase-based optical conveyor belt[102]; (c) optical fiber tweezers with metasurface assistance[103]; (d) GaN propagation phase-based Airy structured optical tweezers[104]; (e) geometric phase-based reflective holographic optical tweezers[105]](/richHtml/gxxb/2024/44/5/0500001/img_02.jpg)
Fig. 2. A few types of metasurface-based optical tweezers. (a) Geometric phase-based metasurface optical tweezers[101]; (b) geometric phase-based optical conveyor belt[102]; (c) optical fiber tweezers with metasurface assistance[103]; (d) GaN propagation phase-based Airy structured optical tweezers[104]; (e) geometric phase-based reflective holographic optical tweezers[105]
![Metasurfaces-based multifunctional micro-manipulation devices. (a) Metasurface optical tweezers based on bifocal points[106]; (b) multidimensional integrated optical tweezers-optical spanners based on composite phase[107]; (c) multifunctional metasurface micro-manipulator device[108]](/Images/icon/loading.gif)
Fig. 3. Metasurfaces-based multifunctional micro-manipulation devices. (a) Metasurface optical tweezers based on bifocal points[106]; (b) multidimensional integrated optical tweezers-optical spanners based on composite phase[107]; (c) multifunctional metasurface micro-manipulator device[108]
![A few types of metasurface-based vacuum optical tweezers. (a) Geometric phase metasurface magneto-optical trap (MOT)[120]; (b), (c) metasurface holographic optical tweezers trapping single atom array[122-123]; (d) vacuum metasurface optical tweezers trapping nanoparticles[124]](/Images/icon/loading.gif)
Fig. 4. A few types of metasurface-based vacuum optical tweezers. (a) Geometric phase metasurface magneto-optical trap (MOT)[120]; (b), (c) metasurface holographic optical tweezers trapping single atom array[122-123]; (d) vacuum metasurface optical tweezers trapping nanoparticles[124]
![Optical pulling force achieved by metasurfaces. (a) Particle dragging achieved by concentric ring metasurface[129]; (b), (c), (d) optical pulling force facilitated by hyperbolic metamaterials[130]; (e) optical pulling force on diffraction grating[131]; (f) Switch between pulling and propulsion forces achieved by geometric phase metasurface[132]](/Images/icon/loading.gif)
Fig. 5. Optical pulling force achieved by metasurfaces. (a) Particle dragging achieved by concentric ring metasurface[129]; (b), (c), (d) optical pulling force facilitated by hyperbolic metamaterials[130]; (e) optical pulling force on diffraction grating[131]; (f) Switch between pulling and propulsion forces achieved by geometric phase metasurface[132]
![Optical micro-manipulation based on topological photonics. (a) Optical pulling realized with topological photonic crystal waveguide based on square lattice[139]; (b) optical pulling achieved through momentum topology[140]; (c) optical pulling achieved with topological metamaterials[141]; (d) optical pulling realized with photonic crystal waveguide based on hexagonal lattice[142]; (e) topological BIC optical force induced by bilayer photonic crystal[146]; (f) optical force enabled detection of Skyrmion topological state[147]](/Images/icon/loading.gif)
Fig. 6. Optical micro-manipulation based on topological photonics. (a) Optical pulling realized with topological photonic crystal waveguide based on square lattice[139]; (b) optical pulling achieved through momentum topology[140]; (c) optical pulling achieved with topological metamaterials[141]; (d) optical pulling realized with photonic crystal waveguide based on hexagonal lattice[142]; (e) topological BIC optical force induced by bilayer photonic crystal[146]; (f) optical force enabled detection of Skyrmion topological state[147]
![Light-driven metallic surface plasmonic microstructures. (a) Surface plasmonic optical motor[148]; (b) optical transverse force induced by surface plasmonic optical motor[149]; (c) optical micro-drone[150]](/Images/icon/loading.gif)
Fig. 7. Light-driven metallic surface plasmonic microstructures. (a) Surface plasmonic optical motor[148]; (b) optical transverse force induced by surface plasmonic optical motor[149]; (c) optical micro-drone[150]
![Light-driven dielectric metamechanics. (a) SiO2-based geometric phase metasurface induces optical spin-related transverse force and negative torque[151]; (b) metavehicle based on OGM and its experimental results[152]; (c) BIC metavehicle based on OGM[153]; (d) fully functional dielectric metavehicle and its theoretical results[154]; (e) photonic levitation of metasurfaces in vacuum[155]](/Images/icon/loading.gif)
Fig. 8. Light-driven dielectric metamechanics. (a) SiO2-based geometric phase metasurface induces optical spin-related transverse force and negative torque[151]; (b) metavehicle based on OGM and its experimental results[152]; (c) BIC metavehicle based on OGM[153]; (d) fully functional dielectric metavehicle and its theoretical results[154]; (e) photonic levitation of metasurfaces in vacuum[155]

Set citation alerts for the article
Please enter your email address