• Ultrafast Science
  • Vol. 4, Issue 1, 0076 (2024)
Takuma Nakamura, Kazuki Hashimoto, and Takuro Ideguchi*
Author Affiliations
  • Institute for Photon Science and Technology, The University of Tokyo, Tokyo 113-0033, Japan.
  • show less
    DOI: 10.34133/ultrafastscience.0076 Cite this Article
    Takuma Nakamura, Kazuki Hashimoto, Takuro Ideguchi. Broadband Coherent Raman Scattering Spectroscopy at 50,000,000 Spectra per Second[J]. Ultrafast Science, 2024, 4(1): 0076 Copy Citation Text show less
    References

    [1] Cheng J-X, Xie X S. Coherent Raman scattering microscopy. Boca Raton (FL): CRC Press; 2012.

    [2] Polli D, Kumar V, Valensise CM, Marangoni M, Cerullo G. Broadband coherent Raman scattering microscopy. Laser Photon Rev. 2018;12(9):1800020.

    [3] Ideguchi T, Holzner S, Bernhardt B, Guelachvili G, Picqué N, Hänsch TW. Coherent Raman spectro-imaging with laser frequency combs. Nature. 2013;502(7471):355–358.

    [4] Camp CH Jr, Lee YJ, Heddleston JM, Hartshorn CM, Walker ARH, Rich JN, Lathia JD, Cicerone MT. High-speed coherent Raman fingerprint imaging of biological tissues. Nat Photonics. 2014;8:627–634.

    [5] Karpf S, Eibl M, Wieser W, Klein T, Huber R. A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy. Nat Commun. 2015;6:6–11.

    [6] Hashimoto K, Takahashi M, Ideguchi T, Goda K. Broadband coherent Raman spectroscopy running at 24,000 spectra per second. Sci Rep. 2016;6:21036.

    [7] Liao C-S, Huang K-C, Hong W, Chen AJ, Karanja C, Wang P, Eakins G, Cheng J-X. Stimulated Raman spectroscopic imaging by microsecond delay-line tuning. Optica. 2016;3(12):1377–1380.

    [8] Saltarelli F, Kumar V, Viola D, Crisafi F, Preda F, Cerullo G, Polli D. Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher. Opt Express. 2016;24(19):21264.

    [9] Dobner S, Fallnich C. Dispersive Fourier transformation femtosecond stimulated Raman scattering. Appl Phys B Lasers Opt. 2016;122(11):278.

    [10] Camp CH Jr, Cicerone MT. Chemically sensitive bioimaging with coherent Raman scattering. Nat Photonics. 2015;9:295–305.

    [11] Camp CH Jr, Yegnanarayanan S, Eftekhar AA, Adibi A. Label-free flow cytometry using multiplex coherent anti-Stokes Raman scattering (MCARS) for the analysis of biological specimens. Opt Lett. 2011;36(12):2309–2311.

    [12] Hiramatsu K, Ideguchi T, Yonamine Y, Lee SW, Luo Y, Hashimoto K, Ito T, Hase M, Park JW, Kasai Y, et al. High-throughput label-free molecular fingerprinting flow cytometry. Sci Adv. 2019;5(1):eaau0241.

    [13] Suzuki Y, Kobayashi K, Wakisaka Y, Deng D, Tanaka S, Huang C-J, Lei C, Sun C-W, Liu H, Fujiwaki Y, et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc Natl Acad Sci USA. 2019;116(32):15842–15848.

    [14] Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat Photonics. 2013;7:102–112.

    [15] Chou J, Solli DR, Jalali B. Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation. Appl Phys Lett. 2008;92: Article 111102.

    [16] Kawai A, Hashimoto K, Dougakiuchi T, Badarla VR, Imamura T, Edamura T, Ideguchi T. Time-stretch infrared spectroscopy. Commun Phys. 2020;3(1):152.

    [17] Hashimoto K, Nakamura T, Kageyama T, Badarla VR, Shimada H, Horisaki R, Ideguchi T. Upconversion time-stretch infrared spectroscopy. Light Sci Appl. 2023;12(1):48.

    [18] Solli DR, Chou J, Jalali B. Amplified wavelength-time transformation for real-time spectroscopy. Nat Photonics. 2008;2(1):48–51.

    [19] Bohlin A, Patterson BD, Kliewer CJ. Dispersive Fourier transformation for megahertz detection of coherent stokes and anti-stokes Raman spectra. Opt Commun. 2017;402:115–118.

    [20] Yan Y, Gamble EB, Nelson KA. Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J Chem Phys. 1985;83:5391–5399.

    [21] Nakamura T, Ramaiah Badarla V, Hashimoto K, Schunemann PG, Ideguchi T. Simple approach to broadband mid-infrared pulse generation with a mode-locked Yb-doped fiber laser. Opt Lett. 2022;47(7):1790.

    [22] Adler F, Sell A, Sotier F, Huber R, Leitenstorfer A. Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser. Opt Lett. 2007;32(24):3504–3506.

    [23] Heuke S, Rigneault H. Coherent Stokes Raman scattering microscopy (CSRS). Nat Commun. 2023;14(1):3337.

    [24] Valensise CM, Giuseppi A, Vernuccio F, De la Cadena A, Cerullo G, Polli D. Removing non-resonant background from CARS spectra via deep learning. APL Photonics. 2020;5: Article 061305.

    [25] Isobe K, Suda A, Tanaka M, Hashimoto H, Kannari F, Kawano H, Mizuno H, Miyawaki A, Midorikawa K. Single-pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse. Opt Express. 2009;17(14):11259.

    [26] Hashimoto K, Omachi J, Ideguchi T. Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses. Opt Express. 2018;26(11, 14314):14307.

    [27] Hudson B, Hetherington W, Cramer S, Chabay I, Klauminzer GK. Resonance enhanced coherent anti-Stokes Raman scattering. Proc Natl Acad Sci USA. 1976;73(11):3798–3802.

    [28] Ermakov IV, Sharifzadeh M, Ermakova M, Gellermann W. Resonance Raman detection of carotenoid antioxidants in living human tissue. J Biomed Opt. 2005;10(6): Article 064028.

    [29] Efremov EV, Ariese F, Gooijer C. Achievements in resonance Raman spectroscopy. Anal Chim Acta. 2008;606(2):119–134.

    [30] Wei L, Chen Z, Shi L, Long R, Anzalone AV, Zhang L, Hu F, Yuste R, Cornish VW, Min W. Super-multiplex vibrational imaging. Nature. 2017;544(7651):465–470.

    [31] Buhrke D, Hildebrandt P. Probing structure and reaction dynamics of proteins using time-resolved resonance Raman spectroscopy. Chem Rev. 2020;120(7):3577–3630.

    [32] Zhang Y, Lu M, Hu J, Li Y, Shum PP, Chen J, Wei H. Rapid coherent Raman hyperspectral imaging based on delay-spectral focusing dual-comb method and deep learning algorithm. Opt Lett. 2023;48(3):550.

    [33] Kinegawa R, Hiramatsu K, Hashimoto K, Badarla VR, Ideguchi T, Goda K. High-speed broadband Fourier-transform coherent anti-stokes Raman scattering spectral microscopy. J Raman Spectrosc. 2019;50(8):1141–1146.

    [34] Sinjab F, Hashimoto K, Badarla VR, Omachi J, Ideguchi T. Multimodal laser-scanning nonlinear optical microscope with a rapid broadband Fourier-transform coherent Raman modality. Opt Express. 2020;28(14):20794.

    [35] Kizawa S, Hashimoto M. Ultrahigh-speed multiplex coherent anti-Stokes Raman scattering microspectroscopy using scanning elliptical focal spot. J Chem Phys. 2021;155(14): Article 144201.

    [36] Nakamura T, Tani S, Ito I, Endo M, Kobayashi Y. Piezo-electric transducer actuated mirror with a servo bandwidth beyond 500 kHz. Opt Express. 2020;28(11):16118–16125.

    Takuma Nakamura, Kazuki Hashimoto, Takuro Ideguchi. Broadband Coherent Raman Scattering Spectroscopy at 50,000,000 Spectra per Second[J]. Ultrafast Science, 2024, 4(1): 0076
    Download Citation