• Chinese Optics Letters
  • Vol. 23, Issue 8, 081601 (2025)
Long Chen1, Junhuan Lai1, Yong Xu2, Yinsheng Xu3, and Xueyun Liu1、*
Author Affiliations
  • 1The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
  • 2Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, China
  • 3State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.3788/COL202523.081601 Cite this Article Set citation alerts
    Long Chen, Junhuan Lai, Yong Xu, Yinsheng Xu, Xueyun Liu, "Blue LED-excitable ultra broadband near-infrared luminescence based on KCdF3:Cr3+/Ni2+ nanocrystals embedded in fluorosilicate glass," Chin. Opt. Lett. 23, 081601 (2025) Copy Citation Text show less
    References

    [1] Y. P. Zhou, C. C. Li, Y. H. Wang. Crystal-field engineering control of an ultraviolet-visible-responsive near-infrared-emitting phosphor and its applications in plant growth, night vision, and nir spectroscopy detection. Adv. Opt. Mater., 10, 2102246(2022).

    [2] L. L. Tan, Y. Q. Fu, S. L. Kang et al. Broadband NIR-emitting Te cluster-doped glass for smart light source towards night-vision and NIR spectroscopy applications. Photonics Res., 10, 1187(2022).

    [3] X. F. Zhou, W. Y. Geng, J. Y. Li et al. An ultraviolet-visible and near-infrared-responded broadband NIR phosphor and its NIR spectroscopy application. Adv. Opt. Mater., 8, 1902003(2020).

    [4] Y. T. Tsai, Y. L. Huang, C. C. Lin. Infrared to short-wave infrared-emitting phosphors for light-emitting diode applications. ACS Appl. Opt. Mater., 1, 1104(2023).

    [5] Y. F. Zhuo, F. G. Wu, Y. P. Niu et al. Super broadband emission across NIR-I and NIR-II under blue light excitation of Cr3+, Ni2+ co-doped Sr2GaTaO6 phosphor achieved by two-site occupation and effective energy transfer. Laser Photonics Rev., 18, 2400105(2024).

    [6] Q. Q. Zhang, D. J. Liu, Z. N. Wang et al. LaMgGa11O19:Cr3+, Ni2+ as blue-light excitable near-infrared luminescent materials with ultra-wide emission and high external quantum efficiency. Adv. Opt. Mater., 11, 2202478(2023).

    [7] X. J. Wang, Z. J. Wang, M. J. Zheng et al. A dual-excited and dual near-infrared emission phosphor Mg14Ge5O24:Cr3+, Cr4+ with a super broad band for biological detection. Dalton Trans., 50, 311(2021).

    [8] C. J. Li, J. Y. Zhong. Efficient and thermally robust broadband near-infrared emission in a garnet Ca3MgHfGe3O12:Cr3+ phosphor. Adv. Opt. Mater., 11, 2202323(2022).

    [9] W. Wang, Q. P. Chen, Y. F. Zhao et al. PbS quantum dots and BaF2:Tm3+ nanocrystals co-doped glass for ultra-broadband near-infrared emission [Invited]. Chin. Opt. Lett., 20, 021603(2022).

    [10] F. G. Chen, Z. Chen, J. R. Qiu et al. Highly efficient, tunable, ultrabroadband NIR photoemission from Bi-doped nitridated germanate glasses toward all-band amplification in optical communication. Chin. Opt. Lett., 21, 051601(2023).

    [11] M. H. Jin, F. Li, J. Q. Xiahou et al. A new persistent luminescence phosphor of ZnGa2O4:Ni2+ for the second near-infrared transparency window. J. Alloys Compd., 931, 167491(2023).

    [12] J. D. Wu, D. P. Chen, X. K. Wu et al. Ultra-broad near-infrared emission of Bi-doped SiO2-Al2O3-GeO2 optical fibers. Chin. Opt. Lett., 9, 071601(2011).

    [13] C. Tian, J. Ruan, Y. Cheng et al. Ni2+ concentration-dependent and temperature-dependent NIR photoluminescence properties in novel transparent glass-ceramics containing cubic CaTa2O6: Ni2+ nanocrystals. Ceram. Int., 50, 54379(2024).

    [14] V. Rajendran, M. H. Fang, G. N. D. Guzman et al. Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications. ACS Energy Lett., 3, 2679(2018).

    [15] E. H. Song, H. Ming, Y. Y. Zhou et al. Cr3+-doped Sc-based fluoride enabling highly efficient near infrared luminescence: a case study of K2NaScF6:Cr3+. Laser Photonics Rev., 15, 2000410(2020).

    [16] M. Q. Mao, T. L. Zhou, H. T. Zeng et al. Broadband near-infrared (NIR) emission realized by the crystal-field engineering of Y3-xCaxAl5-xSixO12:Cr3+ (x = 0–2.0) garnet phosphors. J. Mater. Chem. C., 8, 1981(2020).

    [17] S. Horstmann, E. Irran, W. Schnick. Synthesis and crystal structure of phosphorus(V) nitride α-P3N5. Angew. Chem. Int. Ed. Engl., 36, 1873(2003).

    [18] J. W. Qiao, S. Zhang, X. Q. Zhou et al. Near-infrared light-emitting diodes utilizing a europium-activated calcium oxide phosphor with external quantum efficiency of up to 54.7%. Adv. Mater., 34, 2201887(2022).

    [19] S. Wang, J. Z. Cai, R. Pang et al. Synthesis and luminescence properties of a broadband near-infrared emitting non-gallate persistent luminescence Mg1.4Zn0.6SnO4:Cr3+ phosphor. Dalton Trans., 50, 5666(2021).

    [20] S. H. Miao, Y. J. Liang, Y. Zhang et al. Blue LED-pumped broadband short-wave infrared emitter based on LiMgPO4:Cr3+, Ni2+ phosphor. Adv. Mater. Technol., 7, 2200320(2022).

    [21] A. Satpathy, W. T. Huang, M. H. Chan et al. Near-infrared I/II nanophosphors with Cr3+/Ni2+ energy transfer for bioimaging. Adv. Opt. Mater., 11, 2300321(2023).

    [22] N. Rakov, F. Matias, G. S. Maciel. Temperature sensing performance of Er3+:Yb3+ co-doped CaF2 ceramic powders using near-infrared light. J. Rare Earths., 43, 253(2024).

    [23] J. Yang, Y. M. Zhang, J. Liu et al. Boroaluminosilicate glass-ceramics containing mullite-type Cr3+:Al4B2O9 nanocrystals with broadband near-infrared luminescence. J. Eur. Ceram. Soc., 43, 6356(2023).

    [24] S. B. Liu, G. L. Wang, L. Y. Xu et al. Synthesis and luminescence characteristics of an efficient broadband NIR phosphor:Cr3+ activated GaTa0.5Nb0.5O4. Ceram. Int., 49, 33401(2023).

    [25] G. Chen, X. Guo, S. K. Qin et al. Broadband near-infrared emission in Cr3+-doped MgO-Al2O3-SiO2 dual-phase glass-ceramics for near-infrared spectroscopy applications. J. Non-Cryst. Solids., 586, 121560(2022).

    [26] J. P. Wu, W. D. Zhuang, R. H. Liu et al. Broadband near-infrared luminescence and energy transfer of Cr3+, Ce3+ co-doped Ca2LuHf2Al3O12 phosphors. J. Rare Earths., 39, 269(2021).

    [27] M. Feizbakhsh, A. Doosti, A. Keshavarzi. Energy transfer from Bi3+ to Mn2+ doped in oxyfluoride glass and transparent glass-ceramics containing KMgF3. J. Solid State Chem., 308, 122938(2022).

    [28] W. Q. Tang, D. Wu, Y. Xiao et al. An efficient perovskite-like phosphor with peak emission wavelength at 850 nm for high-performance NIR LEDs. Adv. Opt. Mater., 11, 2202237(2022).

    [29] B. Malysa, A. Meijerink, T. Jüstel. Temperature dependent photoluminescence of Cr3+ doped Sr8MgLa(PO4)7. Opt. Mater., 85, 341(2018).

    [30] N. Mao, S. Q. Liu, Z. Song et al. A broadband near-infrared phosphor Ca3Y7Ge3O12:Cr3+ with garnet structure. J. Alloys Compd., 863, 158699(2021).

    [31] S. Zhao, Z. F. Mu, L. L. Lou et al. Broadening and enhancing emission of Cr3+ simultaneously by co-doping Yb3+ in Ga1.4In0.6SnO5. J. Rare Earths., 41, 1895(2023).

    [32] C. Q. Wang, J. Lin, X. Zhang et al. Efficient ultra-broadband NIR-II emission achieved by multi-site occupancy in Mg3Ga2GeO8:Ni2+ phosphor. J. Alloys Compd., 942, 168893(2023).

    [33] C. J. Tang, B. M. Liu, L. Huang et al. Ni2+-activated MgTi2O5 with broadband emission beyond 1200 nm for NIR-II light source applications. J. Mater. Chem. C., 10, 18234(2022).

    [34] Q. Y. Jia, L. Q. Yao, S. J. Yu et al. Efficient and ultra-broadband Cr3+/Ni2+ co-doped phosphors for light-emitting diodes with spectral output over NIR-I and NIR-II regions. J. Mater. Chem. C., 11, 11046(2023).

    [35] C. P. Wang, Y. X. Zhang, X. Han et al. Energy transfer enhanced broadband near-infrared phosphors: Cr3+/Ni2+ activated ZnGa7O4-Zn7SnO4 solid solutions for the second NIR window imaging. J. Mater. Chem. C., 9, 4583(2021).

    [36] B. M. Liu, X. X. Guo, L. Huang et al. A super-broadband NIR dual-emitting Mg7SnO4:Cr3+, Ni2+ phosphor for ratiometric phosphor-converted NIR light source applications. Adv. Mater. Technol., 8, 2201181(2022).

    [37] W. C. Zheng, X. X. Wu, T. Sheng. Local release factors of Cr3+ and Ni2+ centers in the tetragonal phase of RbCdF3 crystal. Physica B., 349, 177(2004).

    [38] Q. N. Mao, B. J. Lan, S. F. Zhou. Crystallization control in Ni2+-doped glass-ceramics for broadband near-infrared luminesce. J. Am. Ceram. Soc., 103, 2569(2019).

    [39] X. M. Li, S. S. Zhou, R. F. Wei et al. Blue-green color-tunable emissions in novel transparent Sr7LuF7:Eu/Tb glass-ceramics for WLEDs. Chin. Opt. Lett., 18, 051601(2020).

    [40] B. T. Wu, S. F. Zhou, J. Ruan et al. Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics. Appl. Phys. Lett., 92, 151102(2008).

    [41] J. Luo, B. T. Wu, B. Zhu et al. Energy transfer between Cr3+ and Ni2+ in transparent glass ceramics containing β-Ga2O3 nanocrystals. J. Appl. Phys., 106, 053527(2009).

    [42] B. T. Wu, S. F. Zhou, J. Ruan et al. Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl7O4 nanocrystals. Opt. Express., 16, 2508(2008).

    [43] Y. X. Zhuang, M. J. Guan, J. H. Xie et al. Superbroadband near-infrared emission from Cr-Ni co-doped transparent forsterite glass ceramics. J. Phys. D: Appl. Phys., 43, 095401(2010).

    [44] S. M. Gu, B. M. Liu, S. C. Si et al. Laser-driven NIR light source based on MgO:Cr3+, Ni2+ phosphor-in-glass film for NIR spectroscopy application. J. Mater. Chem. C., 11, 9014(2023).

    [45] N. Zeng, P. Zhao, X. M. Li et al. Tuning broadband up-conversion by precipitation of perovskite KMgF3 nanocrystals in fluorosilicate glasses. Ceram. Int., 47, 13409(2021).

    [46] J. K. Cao, H. Guo, F. F. Hu et al. Instant precipitation of KMgF3:Ni2+ nanocrystals with broad emission (1.3–2.2 µm) for potential combustion gas sensors. J. Am. Ceram. Soc., 101, 3890(2018).

    [47] Y. D. Zhang, B. C. Sun, L. Yang et al. Multi-phase induced ultra-broad 1100–2100 nm emission of Ni2+ in nano-glass composites containing hybrid ZnGa7O4 and ZnF2 nanocrystals. J. Eur. Ceram. Soc., 40, 2229(2020).

    [48] M. Yu, P. Zhao, L. Chen et al. Elaboration and mid-infrared emission of transparent glass ceramics containing highly crystallized KY3F10:Er3+ nanocrystals. Ceram. Int., 49, 17904(2023).

    [49] X. X. Han, E. H. Song, W. B. Chen et al. Color-tunable upconversion luminescence and prolonged Eu3+ fluorescence lifetime in fluoride KCdF3:Yb3+, Mn2+, Eu3+ via controllable and efficient energy transfer. J. Mater. Chem. C., 8, 9836(2020).

    [50] X. Wang, W. H. Li, K. Tian et al. Enhanced near-infrared emission in Yb3+-Cr3+ codoped KZnF3 glass ceramics excited by a solar simulator. Ceram. Int., 45, 6738(2019).

    Long Chen, Junhuan Lai, Yong Xu, Yinsheng Xu, Xueyun Liu, "Blue LED-excitable ultra broadband near-infrared luminescence based on KCdF3:Cr3+/Ni2+ nanocrystals embedded in fluorosilicate glass," Chin. Opt. Lett. 23, 081601 (2025)
    Download Citation