[1] M.F. Gonzalez-Zalba, et al.. Scaling silicon-based quantum computing using CMOS technology.
[2] X. Xue, et al.. Quantum logic with spin qubits crossing the surface code threshold.
[3] A. Noiri, et al.. Fast universal quantum gate above the fault-tolerance threshold in silicon.
[4] A.R. Mills, et al.. Two-qubit silicon quantum processor with operation fidelity exceeding 99%.
[6] S.G.J. Philips, et al.. Universal control of a six-qubit quantum processor in silicon.
[7] R. Maurand, et al.. A CMOS silicon spin qubit.
[8] A.M.J. Zwerver, et al.. Qubits made by advanced semiconductor manufacturing.
[9] L.C. Camenzind, et al.. A hole spin qubit in a fin field-effect transistor above 4 kelvin.
[12] D.J. Reilly. Challenges in scaling-up the control interface of a quantum computer.
[13] L. Petit, et al.. Universal quantum logic in hot silicon qubits.
[14] C.H. Yang, et al.. Operation of a silicon quantum processor unit cell above one kelvin.
[15] J.P.G. van Dijk, et al.. Impact of classical control electronics on qubit fidelity.
[16] X. Xue, et al.. CMOS-based cryogenic control of silicon quantum circuits.
[20] S.J. Pauka, et al.. A cryogenic cmos chip for generating control signals for multiple qubits.
[29] G.M. Noah, et al.. CMOS on-chip thermometry at deep cryogenic temperatures.
[30] L.P. Kouwenhoven, D.G. Austing, S. Tarucha. Few-electron quantum dots.
[33] D. Maradan, et al.. GaAs quantum dot thermometry using direct transport and charge sensing.
[34] C.C. Escott, F.A. Zwanenburg, A. Morello. Resonant tunnelling features in quantum dots.
[35] Z. Iftikhar, et al.. Primary thermometry triad at 6 mK in mesoscopic circuits.
[38] C. Spence, et al.. Probing charge noise in few electron CMOS quantum dots. Preprint at.
[44] F. Vigneau, et al.. Probing quantum devices with radio-frequency reflectometry.