• Chip
  • Vol. 3, Issue 3, 100097 (2024)
Mathieu de Kruijf1、2、*, Grayson M. Noah1, Alberto Gomez-Saiz1, John J.L. Morton1、2, and M. Fernando Gonzalez-Zalba1
Author Affiliations
  • 1Quantum Motion, London N7 9HJ, United Kingdom
  • 2London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
  • show less
    DOI: 10.1016/j.chip.2024.100097 Cite this Article
    Mathieu de Kruijf, Grayson M. Noah, Alberto Gomez-Saiz, John J.L. Morton, M. Fernando Gonzalez-Zalba. Measurement of cryoelectronics heating using a local quantum dot thermometer in silicon[J]. Chip, 2024, 3(3): 100097 Copy Citation Text show less
    References

    [1] M.F. Gonzalez-Zalba, et al.. Scaling silicon-based quantum computing using CMOS technology.

    [2] X. Xue, et al.. Quantum logic with spin qubits crossing the surface code threshold.

    [3] A. Noiri, et al.. Fast universal quantum gate above the fault-tolerance threshold in silicon.

    [4] A.R. Mills, et al.. Two-qubit silicon quantum processor with operation fidelity exceeding 99%.

    [5] K. Takeda, A. Noiri, T. Nakajima, T. Kobayashi, S. Tarucha. Quantum error correction with silicon spin qubits.

    [6] S.G.J. Philips, et al.. Universal control of a six-qubit quantum processor in silicon.

    [7] R. Maurand, et al.. A CMOS silicon spin qubit.

    [8] A.M.J. Zwerver, et al.. Qubits made by advanced semiconductor manufacturing.

    [9] L.C. Camenzind, et al.. A hole spin qubit in a fin field-effect transistor above 4 kelvin.

    [10] S. Schaal, et al.. A CMOS dynamic random access architecture for radio-frequency readout of quantum devices.

    [11] A. Ruffino, et al.. A cryo-CMOS chip that integrates silicon quantum dots and multiplexed dispersive readout electronics.

    [12] D.J. Reilly. Challenges in scaling-up the control interface of a quantum computer.

    [13] L. Petit, et al.. Universal quantum logic in hot silicon qubits.

    [14] C.H. Yang, et al.. Operation of a silicon quantum processor unit cell above one kelvin.

    [15] J.P.G. van Dijk, et al.. Impact of classical control electronics on qubit fidelity.

    [16] X. Xue, et al.. CMOS-based cryogenic control of silicon quantum circuits.

    [17] L. Howe, et al.. Digital control of a superconducting qubit using a josephson pulse generator at 3 K.

    [18] D. Underwood, et al.. Using cryogenic CMOS control electronics to enable a two-qubit cross-resonance gate.

    [19] J.C. Bardin, et al.. A 28nm bulk-cmos 4-to-8 GHz 2 mW cryogenic pulse modulator for scalable quantum computing.

    [20] S.J. Pauka, et al.. A cryogenic cmos chip for generating control signals for multiple qubits.

    [21] J.-S. Park, et al.. A fully integrated cryo-cmos soc for qubit control in quantum computers capable of state manipulation, readout and high-speed gate pulsing of spin qubits in intel 22 nm FFL FinFET technology.

    [22] L. Le Guevel, et al.. Low-power transimpedance amplifier for cryogenic integration with quantum devices.

    [23] B. Prabowo, et al.. A 6-to-8 GHz 0.17 mW/Qubit cryo-CMOS receiver for multiple spin qubit readout in 40 nm CMOS technology.

    [24] A. Ruffino, et al.. A fully-integrated 40-nm 5–6.5 GHz cryo-CMOS system-on-chip with I/Q receiver and frequency synthesizer for scalable multiplexed readout of quantum dots. 2021 IEEE International Solid- State Circuits Conference (ISSCC) (2021), pp. 210-212.

    [25] L.L. Guevel, et al.. A 110 mK 295 μW 28 nm FDSOI CMOS quantum integrated circuit with a 2.8 GHz excitation and nA current sensing of an on-chip double quantum dot.

    [27] P.A.T. Hart, M. Babaie, A. Vladimirescu, F. Sebastiano. Characterization and modeling of self-heating in nanometer bulk-CMOS at cryogenic temperatures.

    [28] A.M. Savin, J.P. Pekola, D.V. Averin, V.K. Semenov. Thermal budget of superconducting digital circuits at subkelvin temperatures.

    [29] G.M. Noah, et al.. CMOS on-chip thermometry at deep cryogenic temperatures.

    [30] L.P. Kouwenhoven, D.G. Austing, S. Tarucha. Few-electron quantum dots.

    [31] M.F. Gonzalez-Zalba, S. Barraud, A.J. Ferguson, A.C. Betz. Probing the limits of gate-based charge sensing.

    [33] D. Maradan, et al.. GaAs quantum dot thermometry using direct transport and charge sensing.

    [34] C.C. Escott, F.A. Zwanenburg, A. Morello. Resonant tunnelling features in quantum dots.

    [35] Z. Iftikhar, et al.. Primary thermometry triad at 6 mK in mesoscopic circuits.

    [36] I. Ahmed, et al.. Primary thermometry of a single reservoir using cyclic electron tunneling to a quantum dot.

    [37] L. Kranz, et al.. Exploiting a single-crystal environment to minimize the charge noise on qubits in silicon.

    [38] C. Spence, et al.. Probing charge noise in few electron CMOS quantum dots. Preprint at.

    [39] R.P. Behringer, R.C. Richardson, E.N. Smith. Experimental techniques in condensed matter physics at low temperatures.

    [41] R. Acharya, et al.. Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer.

    [42] L. Le Guevel, et al.. Low-power transimpedance amplifier for cryogenic integration with quantum devices.

    [43] L. Le Guevel, et al.. Impedancemetry of multiplexed quantum devices using an on-chip cryogenic complementary metal-oxide-semiconductor active inductor.

    [44] F. Vigneau, et al.. Probing quantum devices with radio-frequency reflectometry.

    [45] V. Champain, et al.. Real-time milli-Kelvin thermometry in a semiconductor qubit architecture. Preprint at.

    Mathieu de Kruijf, Grayson M. Noah, Alberto Gomez-Saiz, John J.L. Morton, M. Fernando Gonzalez-Zalba. Measurement of cryoelectronics heating using a local quantum dot thermometer in silicon[J]. Chip, 2024, 3(3): 100097
    Download Citation