[1] SEBASTIAN A, TUMA T, PAPANDREOU N, et al. Temporal correlation detection using computational phase-change memory[J]. Nature Communications, 2017, 8: 1115.
[2] LEE H Y, LEE K S, KIM J H, et al. Local similarity Siamese network for urban land change detection on remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4139-4149.
[3] LEI T, ZHANG Y X, LV Z Y, et al. Landslide inventory mapping from bitemporal images using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16: 982-986.
[7] MALILA W A. Change vector analysis: an approach for detecting forest changes with landsat[C]//Symposium on Machine Processing of Remotely Sensed Data. West Lafayette: IEEE, 1980: 326-335.
[8] CELIK T . Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 772-776.
[9] ZHAN Y, FU K, YAN M L, et al. Change detection based on deep Siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1845-1849.
[10] DAUDT R C, SAUX B L, BOULCH A. Fully convolutional Siamese networks for change detection[C]//2018 25th IEEE International Conference on Image Processing (ICIP). Athens: IEEE, 2018: 4063-4067.
[11] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[12] FANG S, LI K Y, SHAO J Y, et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
[13] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer, 2015: 234-241.
[14] ZHANG C X, YUE P, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200.
[15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[R]. Los Alamos: arXiv Preprint, 2014: arXiv: 1409. 1556.
[16] CHEN J, YUAN Z Y, PENG J, et al. DASNet: dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1194-1206.
[17] CHEN H, QI Z P, SHI Z W. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
[19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[R]. Los Alamos: arXiv Preprint, 2021: arXiv: 2010. 11929.
[20] BANDARA W G C, PATEL V M. A transformer-based Siamese network for change detection[C]//IGARSS 2022- 2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur: IEEE, 2022: 207-210.
[21] ZHU J H, ZHOU Y, XU N, et al. Collaborative learning network for change detection and semantic segmentation of remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.
[22] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021: 9992-10002.
[23] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867.
[24] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]//International Conference on Machine Learning. Long Beach: PMLR, 2019: 4644-4647.
[25] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[R]. Los Alamos: arXiv Preprint, 2019: arXiv: 1711. 05101.