• Electronics Optics & Control
  • Vol. 32, Issue 4, 82 (2025)
YU Yongxun1, ZHANG Zhaoxiang2, and ZHANG Shengwei1
Author Affiliations
  • 1Luoyang Institute of Electro-Optical Equipment, AVIC, Luoyang 471000, China
  • 2Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710000, China
  • show less
    DOI: 10.3969/j.issn.1671-637x.2025.04.013 Cite this Article
    YU Yongxun, ZHANG Zhaoxiang, ZHANG Shengwei. A Change Detection Method Combining Multi-Level Features and Global Features[J]. Electronics Optics & Control, 2025, 32(4): 82 Copy Citation Text show less
    References

    [1] SEBASTIAN A, TUMA T, PAPANDREOU N, et al. Temporal correlation detection using computational phase-change memory[J]. Nature Communications, 2017, 8: 1115.

    [2] LEE H Y, LEE K S, KIM J H, et al. Local similarity Siamese network for urban land change detection on remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4139-4149.

    [3] LEI T, ZHANG Y X, LV Z Y, et al. Landslide inventory mapping from bitemporal images using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16: 982-986.

    [7] MALILA W A. Change vector analysis: an approach for detecting forest changes with landsat[C]//Symposium on Machine Processing of Remotely Sensed Data. West Lafayette: IEEE, 1980: 326-335.

    [8] CELIK T . Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 772-776.

    [9] ZHAN Y, FU K, YAN M L, et al. Change detection based on deep Siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1845-1849.

    [10] DAUDT R C, SAUX B L, BOULCH A. Fully convolutional Siamese networks for change detection[C]//2018 25th IEEE International Conference on Image Processing (ICIP). Athens: IEEE, 2018: 4063-4067.

    [11] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.

    [12] FANG S, LI K Y, SHAO J Y, et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.

    [13] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer, 2015: 234-241.

    [14] ZHANG C X, YUE P, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200.

    [15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[R]. Los Alamos: arXiv Preprint, 2014: arXiv: 1409. 1556.

    [16] CHEN J, YUAN Z Y, PENG J, et al. DASNet: dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1194-1206.

    [17] CHEN H, QI Z P, SHI Z W. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.

    [18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.

    [19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[R]. Los Alamos: arXiv Preprint, 2021: arXiv: 2010. 11929.

    [20] BANDARA W G C, PATEL V M. A transformer-based Siamese network for change detection[C]//IGARSS 2022- 2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur: IEEE, 2022: 207-210.

    [21] ZHU J H, ZHOU Y, XU N, et al. Collaborative learning network for change detection and semantic segmentation of remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.

    [22] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021: 9992-10002.

    [23] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867.

    [24] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]//International Conference on Machine Learning. Long Beach: PMLR, 2019: 4644-4647.

    [25] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[R]. Los Alamos: arXiv Preprint, 2019: arXiv: 1711. 05101.

    YU Yongxun, ZHANG Zhaoxiang, ZHANG Shengwei. A Change Detection Method Combining Multi-Level Features and Global Features[J]. Electronics Optics & Control, 2025, 32(4): 82
    Download Citation