[1] Tong XF, Zhao FQ, Ren YZ, Zhang Y, Cui YL, Wang QS. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. J Biomed Mater Res A. 2018;106:3292.
[2] Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18:175.
[3] Jiang H, Yan R, Wang K, Wang Q, Chen X, Chen L, Li L, Lv L. Lactobacillus reuteri DSM 17938 alleviates d-galactosamine-induced liver failure in rats. Biomed Pharmacother. 2021;133: 111000.
[4] Wijdicks EF. Hepatic encephalopathy. N Engl J Med. 2016;375:1660.
[5] Thanapirom K, Treeprasertsuk S, Soonthornworasiri N, Poovorawan K, Chaiteerakij R, Komolmit P, Phaosawasdi K, Pinzani M. The incidence, etiologies, outcomes, and predictors of mortality of acute liver failure in Thailand: a population-base study. BMC Gastroenterol. 2019;19:18.
[6] Dutkowski P, Linecker M, Deoliveira ML, Mullhaupt B, Clavien PA. Challenges to liver transplantation and strategies to improve outcomes. Gastroenterology. 2015;148:307.
[7] Ozden I, Yavru HA, Durmaz O, Orhun G, Salmaslioglu A, Gulluoglu M, Alper A, Ibis C, Serin KR, Onal Z, Ozcan PE, Poyanli A, Hancerli S, Cagatay A, Cantez S, Kaymakoglu S. Complementary roles of cadaveric and living donor liver transplantation in acute liver failure. J Gastrointest Surg. 2021;25:2516.
[8] Collin De L’hortet A, Takeishi K, Guzman-Lepe J, Handa K, Matsubara K, Fukumitsu K, Dorko K, Presnell SC, Yagi H, Soto-Gutierrez A. Liver-regenerative transplantation: regrow and reset. Am J Transplant. 2016;16:1688.
[9] Kwong A, Kim WR, Lake JR, Smith JM, Schladt DP, Skeans MA, Noreen SM, Foutz J, Miller E, Snyder JJ, Israni AK, Kasiske BL. OPTN/SRTR 2018 annual data report: liver. Am J Transplant. 2020;20:193.
[10] Hou YT, Hsu CC. Development of a 3D porous chitosan/gelatin liver scaffold for a bioartificial liver device. J Biosci Bioeng. 2020;129:741.
[11] Pareja E, Gomez-Lechon MJ, Cortes M, Bonora-Centelles A, Castell JV, Mir J. Human hepatocyte transplantation in patients with hepatic failure awaiting a graft. Eur Surg Res. 2013;50:273.
[12] Nicolas CT, Kaiser RA, Hickey RD, Allen KL, Du Z, Vanlith CJ, Guthman RM, Amiot B, Suksanpaisan L, Han B, Francipane MG, Cheikhi A, Jiang H, Bansal A, Pandey MK, Garg I, Lowe V, Bhagwate A, Orien D, Kocher JA, Degrado TR, Nyberg SL, Lagasse E, Lillegard JB. Ex vivo cell therapy by ectopic hepatocyte transplantation treats the porcine tyrosinemia model of acute liver failure. Mol Ther Methods Clin Dev. 2020;18:738.
[13] Bhatia SN, Underhill GH, Zaret KS, Fox IJ. Cell and tissue engineering for liver disease. Sci Transl Med. 2014;6:245sr2.
[14] Sakai Y, Yamanouchi K, Ohashi K, Koike M, Utoh R, Hasegawa H, Muraoka I, Suematsu T, Soyama A, Hidaka M, Takatsuki M, Kuroki T, Eguchi S. Vascularized subcutaneous human liver tissue from engineered hepatocyte/fibroblast sheets in mice. Biomaterials. 2015;65:66.
[15] Saadi T, Nayshool O, Carmel J, Ariche A, Bramnik Z, Mironi-Harpaz I, Seliktar D, Baruch Y. Cellularized biosynthetic microhydrogel polymers for intravascular liver tissue regeneration therapy. Tissue Eng Part A. 2014;20:2850.
[16] Ye S, Boeter JWB, Penning LC, Spee B, Schneeberger K. Hydrogels for liver tissue engineering. Bioengineering. 2019;6:59.
[17] Heydari Z, Najimi M, Mirzaei H, Shpichka A, Ruoss M, Farzaneh Z, Montazeri L, Piryaei A, Timashev P, Gramignoli R, Nussler A, Baharvand H, Vosough M. Tissue engineering in liver regenerative medicine: insights into novel translational technologies. Cells. 2020;9:304.
[18] Mazza G, Al-Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: from implantable tissue to whole organ engineering. Hepatol Commun. 2018;2:131.
[19] Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M. Liver tissue engineering as an emerging alternative for liver disease treatment. Tissue Eng Part B Rev. 2020;26:145.
[20] Das P, Divito MD, Wertheim JA, Tan LP. Collagen-I and fibronectin modified three-dimensional electrospun PLGA scaffolds for long-term in vitro maintenance of functional hepatocytes. Mat Sci Eng C-Mater. 2020;111: 110723.
[21] Zhang MM, Xu SX, Wang RY, Che YA, Han CC, Feng W, Wang CW, Zhao W. Electrospun nanofiber/hydrogel composite materials and their tissue engineering applications. J Mater Sci Technol. 2023;162:157.
[22] Li G, Chen K, You D, Xia M, Li W, Fan S, Chai R, Zhang Y, Li H, Sun S. Laminin-coated electrospun regenerated silk fibroin mats promote neural progenitor cell proliferation, differentiation, and survival in vitro. Front Bioeng Biotechnol. 2019;7:190.
[23] Morelli S, Piscioneri A, Salerno S, De Bartolo L. Hollow fiber and nanofiber membranes in bioartificial liver and neuronal tissue engineering. Cells Tissues Organs. 2022;211:447.
[24] Yen CM, Shen CC, Yang YC, Liu BS, Lee HT, Sheu ML, Tsai MH, Cheng WY. Novel electrospun poly(epsilon-caprolactone)/type I collagen nanofiber conduits for repair of peripheral nerve injury. Neural Regen Res. 2019;14:1617.
[25] Sarhane KA, Ibrahim Z, Martin R, Krick K, Cashman CR, Tuffaha SH, Broyles JM, Prasad N, Yao ZC, Cooney DS, Mi R, Lee WA, Hoke A, Mao HQ, Brandacher G. Macroporous nanofiber wraps promote axonal regeneration and functional recovery in nerve repair by limiting fibrosis. Acta Biomater. 2019;88:332.
[26] Mao RY, Yu B, Cui JJ, Wang ZY, Huang XT, Yu HB, Lin KL, Shen SGF. Piezoelectric stimulation from electrospun composite nanofibers for rapid peripheral nerve regeneration. Nano Energy. 2022;98: 107322.
[27] Niu Y, Galluzzi M, Deng F, Zhao Z, Fu M, Su L, Sun W, Jia W, Xia H. A biomimetic hyaluronic acid-silk fibroin nanofiber scaffold promoting regeneration of transected urothelium. Bioeng Transl Med. 2022;7: e10268.
[28] Niu YQ, Liu GC, Fu M, Chen CB, Fu W, Zhang Z, Xia HM, Stadler FJ. Designing a multifaceted bio-interface nanofiber tissue-engineered tubular scaffold graft to promote neo-vascularization for urethral regeneration. J Mater Chem B. 2020;8:1748.
[29] Niu Y, Stadler FJ, Yang X, Deng F, Liu G, Xia H. HA-coated collagen nanofibers for urethral regeneration via in situ polarization of M2 macrophages. J Nanobiotechnol. 2021;19:283.
[30] Yoon JY, Mandakhbayar N, Hyun J, Yoon DS, Patel KD, Kang K, Shim HS, Lee HH, Lee JH, Leong KW, Kim HW. Chemically-induced osteogenic cells for bone tissue engineering and disease modeling. Biomaterials. 2022;289: 121792.
[31] Wang X, Peng Y, Wu Y, Cao S, Deng H, Cao Z. Chitosan/silk fibroin composite bilayer PCL nanofibrous mats for bone regeneration with enhanced antibacterial properties and improved osteogenic potential. Int J Biol Macromol. 2023;230: 123265.
[32] Zhang X, Li Q, Li L, Ouyang J, Wang T, Chen J, Hu X, Ao Y, Qin D, Zhang L, Xue J, Cheng J, Tao W. Bioinspired mild photothermal effect-reinforced multifunctional fiber scaffolds promote bone regeneration. ACS Nano. 2023;17:6466.
[33] Jin QH, Fu Y, Zhang GL, Xu L, Jin GZ, Tang LF, Ju JH, Zhao WX, Hou RX. Nanofiber electrospinning combined with rotary bioprinting for fabricating small-diameter vessels with endothelium and smooth muscle. Compos Part B-Eng. 2022;234: 109691.
[34] Han FX, Jia XL, Dai DD, Yang XL, Zhao J, Zhao YH, Fan YB, Yuan XY. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Biomaterials. 2013;34:7302.
[35] Wu T, Zhang JL, Wang YF, Li DD, Sun BB, El-Hamshary H, Yin M, Mo XM. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Mat Sci Eng C-Mater. 2018;82:121.
[36] Xi YW, Ge J, Guo Y, Lei B, Ma PX. Biomimetic elastomeric polypeptide-based nanofibrous matrix for overcoming multidrug-resistant bacteria and enhancing full-thickness wound healing/skin regeneration. ACS Nano. 2018;12:10772.
[37] Sofi HS, Abdal-Hay A, Rashid R, Rafiq A, Rather S-U, Beigh MA, Alrokayan SH, Khan HA, Tripathi RM, Sheikh FA. Electrospun polyurethane fiber mats coated with fish collagen layer to improve cellular affinity for skin repair. Sustain Mater Technol. 2022;34: e00523.
[38] Choi S, Raja IS, Selvaraj AR, Kang MS, Park T-E, Kim KS, Hyon S-H, Han D-W, Park J-C. Activated carbon nanofiber nanoparticles incorporated electrospun polycaprolactone scaffolds to promote fibroblast behaviors for application to skin tissue engineering. Adv Compos Hybrid Mater. 2022;6:24.
[39] Yu CH, Wang TR, Diao HC, Liu N, Zhang Y, Jiang HY, Zhao P, Shan ZY, Sun ZW, Wu T, Mo XM, Yu TB. Photothermal-triggered structural change of nanofiber scaffold integrating with graded mineralization to promote tendon-bone healing. Adv Fiber Mater. 2022;4:908.
[40] Yang YT, Du YZ, Zhang J, Zhang HL, Guo BL. Structural and functional design of electrospun nanofibers for hemostasis and wound healing. Adv Fiber Mater. 2022;4:1027.
[41] Dong YP, Zheng YQ, Zhang KY, Yao YM, Wang LH, Li XR, Yu JY, Ding B. Electrospun nanofibrous materials for wound healing. Adv Fiber Mater. 2020;2:212.
[42] Slivac I, Zdraveva E, Ivancic F, Zunar B, Holjevac Grguric T, Gaurina Srcek V, Svetec IK, Dolenec T, Bajsic EG, Tominac Trcin M, Mijovic B. Bioactivity comparison of electrospun PCL mats and liver extracellular matrix as scaffolds for HepG2 cells. Polymers. 2021;13:279.
[43] Ghahremanzadeh F, Alihosseini F, Semnani D. Investigation and comparison of new galactosylation methods on PCL/chitosan scaffolds for enhanced liver tissue engineering. Int J Biol Macromol. 2021;174:278.
[44] Gao Y, Callanan A. Influence of surface topography on PCL electrospun scaffolds for liver tissue engineering. J Mater Chem B. 2021;9:8081.
[45] Navarro-Alvarez N, Soto-Gutierrez A, Chen Y, Caballero-Corbalan J, Hassan W, Kobayashi S, Kondo Y, Iwamuro M, Yamamoto K, Kondo E, Tanaka N, Fox IJ, Kobayashi N. Intramuscular transplantation of engineered hepatic tissue constructs corrects acute and chronic liver failure in mice. J Hepatol. 2010;52:211.
[46] Yu YQ, Jiang XS, Gao S, Ma R, Jin Y, Jin X, Peng SY, Mao HQ, Li JT. Local delivery of vascular endothelial growth factor via nanofiber matrix improves liver regeneration after extensive hepatectomy in rats. J Biomed Nanotechnol. 2014;10:3407.
[47] Xu LJ, Wang SF, Su X, Wang Y, Su YN, Huang L, Zhang YW, Chen Z, Chen QQ, Du HT, Zhang YP, Yan L. Mesenchymal stem cell-seeded regenerated silk fibroin complex matrices for liver regeneration in an animal model of acute liver failure. ACS Appl Mater Inter. 2017;9:14716.
[48] Kim Y, Kim YW, Lee SB, Kang K, Yoon S, Choi D, Park SH, Jeong J. Hepatic patch by stacking patient-specific liver progenitor cell sheets formed on multiscale electrospun fibers promotes regenerative therapy for liver injury. Biomaterials. 2021;274: 120899.
[49] Zhang L, Guan Z, Ye JS, Yin YF, Stoltz JF, De Isla N. Research progress in liver tissue engineering. Biomed Mater Eng. 2017;28:S113.
[50] Liang S, Liang S, Yin N, Faiola F. Establishment of a human embryonic stem cell-based liver differentiation model for hepatotoxicity evaluations. Ecotoxicol Environ Saf. 2019;174:353.
[51] Foroutan T, Kassaee MZ, Salari M, Ahmady F, Molavi F, Moayer F. Magnetic Fe3O4 @graphene oxide improves the therapeutic effects of embryonic stem cells on acute liver damage. Cell Prolif. 2021;54: e13126.
[52] Zhang L, Ma XJ, Fei YY, Han HT, Xu J, Cheng L, Li X. Stem cell therapy in liver regeneration: focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol Ther. 2022;232: 108004.
[53] Chen S, Wang J, Ren H, Liu Y, Xiang C, Li C, Lu S, Shi Y, Deng H, Shi X. Hepatic spheroids derived from human induced pluripotent stem cells in bio-artificial liver rescue porcine acute liver failure. Cell Res. 2020;30:95.
[54] Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M, Drewa T. Adipose-derived stem cells as a tool in cell-based therapies. Arch Immunol Ther Exp. 2016;64:443.
[55] Chan TM, Harn HJ, Lin HP, Chou PW, Chen JY, Ho TJ, Chiou TW, Chuang HM, Chiu SC, Chen YC, Yen SY, Huang MH, Liang BC, Lin SZ. Improved human mesenchymal stem cell isolation. Cell Transplant. 2014;23:399.
[56] Wei JJ, Tang L, Chen LL, Xie ZH, Ren Y, Qi HG, Lou JY, Weng GB, Zhang SW. Mesenchymal stem cells attenuates TGF-beta 1-induced EMT by increasing HGF expression in HK-2 cells. Iran J Public Health. 2021;50:908.
[57] Liu WH, Song FQ, Ren LN, Guo WQ, Wang T, Feng YX, Tang LJ, Li K. The multiple functional roles of mesenchymal stem cells in participating in treating liver diseases. J Cell Mol Med. 2015;19:511.
[58] Deng JJ, Wang X, Zhang WH, Sun LY, Han XX, Tong XQ, Yu LM, Ding JD, Yu L, Liu YH. Versatile hypoxic extracellular vesicles laden in an injectable and bioactive hydrogel for accelerated bone regeneration. Adv Funct Mater. 2023;33:2211664.
[59] Wang Y, Yu X, Chen E, Li L. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem Cell Res Ther. 2016;7:71.
[60] Lee H, Cusick RA, Browne F, Ho Kim T, Ma PX, Utsunomiya H, Langer R, Vacanti JP. Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices1. Transplantation. 2002;73:1589.
[61] Albrecht JH. MET and epidermal growth factor signaling: the pillars of liver regeneration? Hepatology. 2016;64:1427.
[62] Shams S, Mohsin S, Nasir GA, Khan M, Khan SN. Mesenchymal stem cells pretreated with HGF and FGF4 can reduce liver fibrosis in mice. Stem Cells Int. 2015;2015: 747245.
[63] Jayalakshmi VT, Bernal W. Update on the management of acute liver failure. Curr Opin Crit Care. 2020;26:163.
[64] Zhan C, Lin G, Huang Y, Wang Z, Zeng F, Wu S. A dopamine-precursor-based nanoprodrug for in-situ drug release and treatment of acute liver failure by inhibiting NLRP3 inflammasome and facilitating liver regeneration. Biomaterials. 2021;268: 120573.
[65] Rodgers SK, Horrow MM. Acute (fulminant) liver failure: a clinical and imaging review. Abdom Radiol. 2021;46:3117.
[66] Lou G, Li A, Cen Y, Yang Q, Zhang T, Qi J, Chen Z, Liu Y. Selonsertib, a potential drug for liver failure therapy by rescuing the mitochondrial dysfunction of macrophage via ASK1-JNK-DRP1 pathway. Cell Biosci. 2021;11:9.
[67] Zeng Y, Wu R, Wang F, Li S, Li L, Li Y, Qin P, Wei M, Yang J, Wu J, Chen A, Ke G, Yan Z, Yang H, Chen Z, Wang Z, Xiao W, Jiang Y, Chen X, Zeng Z, Zhao X, Chen P, Gong S. Liberation of daidzein by gut microbial beta-galactosidase suppresses acetaminophen-induced hepatotoxicity in mice. Cell Host Microbe. 2023;31:766.
[68] Chowdhury A, Nabila J, Adelusi Temitope I, Wang S. Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity. Pharmacol Res. 2020;161: 105102.
[69] Cai X, Cai H, Wang J, Yang Q, Guan J, Deng J, Chen Z. Molecular pathogenesis of acetaminophen-induced liver injury and its treatment options. J Zhejiang Univ Sci B. 2022;23:265.
[70] Bernal W, Wendon J. Acute liver failure. N Engl J Med. 2013;369:2525.
[71] Kim JD, Cho EJ, Ahn C, Park SK, Choi JY, Lee HC, Kim DY, Choi MS, Wang HJ, Kim IH, Yeon JE, Seo YS, Tak WY, Kim MY, Lee HJ, Kim YS, Jun DW, Sohn JH, Kwon SY, Park SH, Heo J, Jeong SH, Lee JH, Nakayama N, Mochida S, Ido A, Tsubouchi H, Takikawa H, Shalimar, Acharya SK, Bernal W, O’grady J, Kim YJ. A model to predict 1-month risk of transplant or death in hepatitis A-related acute liver failure. Hepatology. 2019;70:621.
[72] Moretto F, Catherine FX, Esteve C, Blot M, Piroth L. Isolated anti-HBc: significance and management. J Clin Med. 2020;9:202.
[73] Laumon T, Dietrich H, Muller L, Roger C. Acute liver failure and misdiagnosis: do not forget viral hepatitis E. Anaesth Crit Care Pain Med. 2019;38:73.
[74] Taylor RM, Tujios S, Jinjuvadia K, Davern T, Shaikh OS, Han S, Chung RT, Lee WM, Fontana RJ. Short and long-term outcomes in patients with acute liver failure due to ischemic hepatitis. Dig Dis Sci. 2012;57:777.
[75] Tapper EB, Sengupta N, Bonder A. The incidence and outcomes of ischemic hepatitis: a systematic review with meta-analysis. Am J Med. 2015;128:1314.
[76] Buechter M, Manka P, Heinemann FM, Lindemann M, Baba HA, Schlattjan M, Canbay A, Gerken G, Kahraman A. Potential triggering factors of acute liver failure as a first manifestation of autoimmune hepatitis-a single center experience of 52 adult patients. World J Gastroenterol. 2018;24:1410.
[77] Chalasani N, Bonkovsky HL, Fontana R, Lee W, Stolz A, Talwalkar J, Reddy KR, Watkins PB, Navarro V, Barnhart H, Gu J, Serrano J, United States Drug Induced Liver Injury Network. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology. 2015;148:1340.
[78] Li X, Tang J, Mao Y. Incidence and risk factors of drug-induced liver injury. Liver Int. 1999;2022:42.
[79] Hu C, Li L. Improvement of mesenchymal stromal cells and their derivatives for treating acute liver failure. J Mol Med. 2019;97:1065.
[80] Hwang Y, Kim JC, Tae G. Significantly enhanced recovery of acute liver failure by liver targeted delivery of stem cells via heparin functionalization. Biomaterials. 2019;209:67.
[81] Liu M, Yang J, Hu W, Zhang S, Wang Y. Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly(lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure. Biomed Mater. 2016;11: 015008.
[82] Wang J, Ren H, Yuan X, Ma H, Shi X, Ding Y. Interleukin-10 secreted by mesenchymal stem cells attenuates acute liver failure through inhibiting pyroptosis. Hepatol Res. 2018;48:E194.
[83] Gupta S, Sharma A, Paneerselvan S, Kandoi S, Patra B, Bishi DK, Verma RS. Generation and transplantation of hepatocytes-like cells using human origin hepatogenic serum for acute liver injury treatment. Xenotransplantation. 2022;29: e12730.
[84] Milewski K, Czarnecka AM, Albrecht J, Zielinska M. Decreased expression and uncoupling of endothelial nitric oxide synthase in the cerebral cortex of rats with thioacetamide-induced acute liver failure. Int J Mol Sci. 2021;22:6662.
[85] Temnov AA, Rogov KA, Sklifas AN, Klychnikova EV, Hartl M, Djinovic-Carugo K, Charnagalov A. Protective properties of the cultured stem cell proteome studied in an animal model of acetaminophen-induced acute liver failure. Mol Biol Rep. 2019;46:3101.
[86] Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol. 2018;17:274.
[87] Dargue R, Zia R, Lau C, Nicholls AW, Dare TO, Lee K, Jalan R, Coen M, Wilson ID. Metabolism and effects on endogenous metabolism of paracetamol (acetaminophen) in a porcine model of liver failure. Toxicol Sci. 2020;175:87.
[88] Gonzalez R, Ferrin G, Hidalgo AB, Ranchal I, Lopez-Cillero P, Santos-Gonzalez M, Lopez-Lluch G, Briceno J, Gomez MA, Poyato A, Villalba JM, Navas P, De La Mata M, Muntane J. N-Acetylcysteine, coenzyme Q10 and superoxide dismutase mimetic prevent mitochondrial cell dysfunction and cell death induced by d-galactosamine in primary culture of human hepatocytes. Chem Biol Interact. 2009;181:95.
[89] Choi JH, Kang JW, Kim DW, Sung YK, Lee SM. Protective effects of Mg-CUD against d-galactosamine-induced hepatotoxicity in rats. Eur J Pharmacol. 2011;657:138.
[90] Feng L, Cai L, He GL, Weng J, Li Y, Pan MX, Jiang ZS, Peng Q, Gao Y. Novel d-galactosamine-induced cynomolgus monkey model of acute liver failure. World J Gastroenterol. 2017;23:7572.
[91] Shi D, Zhang J, Zhou Q, Xin J, Jiang J, Jiang L, Wu T, Li J, Ding W, Li J, Sun S, Li J, Zhou N, Zhang L, Jin L, Hao S, Chen P, Cao H, Li M, Li L, Chen X, Li J. Quantitative evaluation of human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs. Gut. 2017;66:955.
[92] Lin CX, Wang XE, Liu NY, Peng Q, Li Y, Zhang L, Gao Y. Characterization and evaluation of HGF-loaded PLGA nanoparticles in a CCl4-induced acute liver injury mouse model. J Nanomater. 2019;2019:7936143.
[93] Unsal V, Cicek M, Sabancilar I. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev Environ Health. 2021;36:279.
[94] Nobakht Lahrood F, Saheli M, Farzaneh Z, Taheri P, Dorraj M, Baharvand H, Vosough M, Piryaei A. Generation of transplantable three-dimensional hepatic-patch to improve the functionality of hepatic cells in vitro and in vivo. Stem Cells Dev. 2020;29:301.
[95] Sepehrinezhad A, Shahbazi A, Sahab Negah S, Joghataei MT, Larsen FS. Drug-induced-acute liver failure: a critical appraisal of the thioacetamide model for the study of hepatic encephalopathy. Toxicol Res. 2021;8:962.
[96] Kang HT, Jun DW, Jang K, Hoh JK, Lee JS, Saeed WK, Chae YJ, Lee JH. Effect of stem cell treatment on acute liver failure model using scaffold. Dig Dis Sci. 2019;64:781.
[97] Yang Q, Shi Y, Yang Y, Chen Z. Deactivation and apoptosis of hepatic macrophages are involved in the development of concanavalin A-induced acute liver failure. Mol Med Rep. 2013;8:757.
[98] Liu W, Jing ZT, Wu SX, He Y, Lin YT, Chen WN, Lin XJ, Lin X. A novel AKT activator, SC79, prevents acute hepatic failure induced by Fas-mediated apoptosis of hepatocytes. Am J Pathol. 2018;188:1171.
[99] Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R, Koch M, Makuuchi M, Dematteo RP, Christophi C, Banting S, Usatoff V, Nagino M, Maddern G, Hugh TJ, Vauthey JN, Greig P, Rees M, Yokoyama Y, Fan ST, Nimura Y, Figueras J, Capussotti L, Buchler MW, Weitz J. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery. 2011;149:713.
[100] Hefler J, Marfil-Garza BA, Pawlick RL, Freed DH, Karvellas CJ, Bigam DL, Shapiro AMJ. Preclinical models of acute liver failure: a comprehensive review. PeerJ. 2021;9: e12579.
[101] Bhushan B, Gunewardena S, Edwards G, Apte U. Comparison of liver regeneration after partial hepatectomy and acetaminophen-induced acute liver failure: a global picture based on transcriptome analysis. Food Chem Toxicol. 2020;139: 111186.
[102] Ogata T, Yamashita K, Horiuchi H, Okuda K, Todo S. A novel tumor necrosis factor-alpha suppressant, ONO-SM362, prevents liver failure and promotes liver regeneration after extensive hepatectomy. Surgery. 2008;143:545.
[103] Ohashi N, Hori T, Chen F, Jermanus S, Nakao A, Uemoto S, Nguyen JH. Matrix metalloproteinase-9 in the initial injury after hepatectomy in mice. World J Gastroenterol. 2013;19:3027.
[104] Tanaka S, Chijiiwa K, Maeda Y. Biliary lipid output in the early stage of acute liver failure induced by 90% hepatectomy in the rat. J Surg Res. 2006;134:81.
[105] Makino H, Togo S, Kubota T, Morioka D, Morita T, Kobayashi T, Tanaka K, Shimizu T, Matsuo K, Nagashima Y, Shimada H. A good model of hepatic failure after excessive hepatectomy in mice. J Surg Res. 2005;127:171.
[106] Qin JJ, Mao W, Wang X, Sun P, Cheng D, Tian S, Zhu XY, Yang L, Huang Z, Li H. Caspase recruitment domain 6 protects against hepatic ischemia/reperfusion injury by suppressing ASK1. J Hepatol. 2018;69:1110.
[107] Chen K, Obara H, Matsubara Y, Fukuda K, Yagi H, Ono-Uruga Y, Matsubara K, Kitagawa Y. Adipose-derived mesenchymal stromal/stem cell line prevents hepatic ischemia/reperfusion injury in rats by inhibiting inflammasome activation. Cell Transplant. 2022;31:09636897221089629.
[108] Zhou J, Guo L, Ma T, Qiu T, Wang S, Tian S, Zhang L, Hu F, Li W, Liu Z, Hu Y, Wang T, Kong C, Yang J, Zhou J, Li H. N-Acetylgalactosaminyltransferase-4 protects against hepatic ischemia/reperfusion injury by blocking apoptosis signal-regulating kinase 1 N-terminal dimerization. Hepatology. 2022;75:1446.
[109] Sahay P, Jain K, Sinha P, Das B, Mishra A, Kesarwani A, Sahu P, Mohan KV, Kumar MJM, Nagarajan P, Upadhyay P. Generation of a rat model of acute liver failure by combining 70% partial hepatectomy and acetaminophen. J Vis Exp. 2019. .
[110] Machaidze Z, Yeh H, Wei L, Schuetz C, Carvello M, Sgroi A, Smith RN, Schuurman HJ, Sachs DH, Morel P, Markmann JF, Buhler LH. Testing of microencapsulated porcine hepatocytes in a new model of fulminant liver failure in baboons. Xenotransplantation. 2017;24: e12297.
[111] Mitsiev I, Rubio K, Ranvir VP, Yu D, Palanisamy AP, Chavin KD, Singh I. Combining ALT/AST values with surgical APGAR score improves prediction of major complications after hepatectomy. J Surg Res (Houst). 2021;4:656.
[112] Cen PP, Fan LX, Wang J, Chen JJ, Li LJ. Therapeutic potential of menstrual blood stem cells in treating acute liver failure. World J Gastroenterol. 2019;25:6190.
[113] Zhang P, Wang CY, Li YX, Pan Y, Niu JQ, He SM. Determination of the upper cut-off values of serum alanine aminotransferase and aspartate aminotransferase in Chinese. World J Gastroenterol. 2015;21:2419.
[114] Bartel LK, Hunter DA, Anderson KB, Yau W, Wu J, Gato WE. Short-term evaluation of hepatic toxicity of titanium dioxide nanofiber (TDNF). Drug Chem Toxicol. 2019;42:35.
[115] Farrugia A. Albumin usage in clinical medicine: tradition or therapeutic? Transfus Med Rev. 2010;24:53.
[116] Ruoss M, Haussling V, Schugner F, Olde Damink LHH, Lee SML, Ge L, Ehnert S, Nussler AK. A standardized collagen-based scaffold improves human hepatocyte shipment and allows metabolic studies over 10 days. Bioengineering. 2018;5:86.
[117] Zachariah S, Kumar K, Lee SWH, Choon WY, Naeem S, Leong C. Interpretation of laboratory data and general physical examination by pharmacists. In: Thomas D, editor. Clinical pharmacy education, practice and research. Amsterdam: Elsevier; 2019. p. 91–108.
[118] Zheng DW, Chen KW, Yan JH, Rao ZY, Yang CH, Li RL, Tang Y, Cheng H, Zhang XZ. A seed-like hydrogel with metabolic cascade microbiota for oral treatment of liver failure. Mater Today. 2022;58:30.
[119] Wei FF, Qi F, Li YY, Dou WY, Zeng TY, Wang J, Yao ZK, Zhang L, Tang Z. Amino-rich nanofiber membrane with favorable hemocompatibility for highly efficient removal of bilirubin from plasma. Sep Purif Technol. 2023;315: 123648.
[120] Levy JH, Mckee A. Chapter 30—Bleeding, hemostasis, and transfusion medicine. In: Sidebotham D, McKee A, Gillham M, Levy JH, editors. Cardiothoracic critical care. Philadelphia: Butterworth-Heinemann; 2007. p. 437–60.
[121] Li WJ, Zhu XJ, Yuan TJ, Wang ZY, Bian ZQ, Jing HS, Shi X, Chen CY, Fu GB, Huang WJ, Shi YP, Liu Q, Zeng M, Zhang HD, Wu HP, Yu WF, Zhai B, Yan HX. An extracorporeal bioartificial liver embedded with 3D-layered human liver progenitor-like cells relieves acute liver failure in pigs. Sci Transl Med. 2020;12: eaba5146.
[122] Miyake Y, Iwasaki Y, Makino Y, Kobashi H, Takaguchi K, Ando M, Sakaguchi K, Shiratori Y. Prognostic factors for fatal outcomes prior to receiving liver transplantation in patients with non-acetaminophen-related fulminant hepatic failure. J Gastroenterol Hepatol. 2007;22:855.
[123] Takikawa Y, Harada M, Wang T, Suzuki K. Usefulness and accuracy of the international normalized ratio and activity percent of prothrombin time in patients with liver disease. Hepatol Res. 2014;44:92.
[124] Echeverria Molina MI, Malollari KG, Komvopoulos K. Design challenges in polymeric scaffolds for tissue engineering. Front Bioeng Biotechnol. 2021;9: 617141.
[125] Zhang HM, Guo M, Zhu TH, Xiong H, Zhu LM. A careob-like nanofibers with a sustained drug release profile for promoting skin wound repair and inhibiting hypertrophic scar. Compos Part B-Eng. 2022;236: 109790.
[126] Tofighi Nasab S, Roodbari NH, Goodarzi V, Khonakdar HA, Mansoori K, Nourani MR. Novel electrospun conduit based on polyurethane/collagen enhanced by nanobioglass for peripheral nerve tissue engineering. J Biomater Sci Polym E. 2022;33:801.
[127] Vasudevan A, Tripathi DM, Sundarrajan S, Venugopal JR, Ramakrishna S, Kaur S. Evolution of electrospinning in liver tissue engineering. Biomimetics. 2022;7:149.
[128] Guo L, Zhu Z, Gao C, Chen K, Lu S, Yan H, Liu W, Wang M, Ding Y, Huang L, Wang X. Development of biomimetic hepatic lobule-like constructs on silk-collagen composite scaffolds for liver tissue engineering. Front Bioeng Biotechnol. 2022;10: 940634.
[129] Rachmiel D, Anconina I, Rudnick-Glick S, Halperin-Sternfeld M, Adler-Abramovich L, Sitt A. Hyaluronic acid and a short peptide improve the performance of a PCL electrospun fibrous scaffold designed for bone tissue engineering applications. Int J Mol Sci. 2021;22:2425.
[130] Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev. 2016;107:17.
[131] Toosi S, Naderi-Meshkin H, Kalalinia F, Peivandi MT, Hosseinkhani H, Bahrami AR, Heirani-Tabasi A, Mirahmadi M, Behravan J. PGA-incorporated collagen: toward a biodegradable composite scaffold for bone-tissue engineering. J Biomed Mater Res A. 2020;2016:104.
[132] Johari N, Khodaei A, Samadikuchaksaraei A, Reis RL, Kundu SC, Moroni L. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: biomechanical patterns. Acta Biomater. 2022;153:38.
[133] Liu S, Lau CS, Liang K, Wen F, Teoh SH. Marine collagen scaffolds in tissue engineering. Curr Opin Biotechnol. 2022;74:92.
[134] Liu L, Zhang S, Huang JY. Progress in modification of silk fibroin fiber. Sci China Technol Sci. 2019;62:919.
[135] Gu MJ, Fan SN, Zhou GD, Ma K, Yao X, Zhang YP. Effects of dynamic mechanical stimulations on the regeneration of in vitro and in vivo cartilage tissue based on silk fibroin scaffold. Compos Part B Eng. 2022;235: 109790.
[136] Hu Z, Niu Q, Hsiao BS, Yao X, Zhang Y. Bioactive polymer-enabled conformal neural interface and its application strategies. Mater Horiz. 2023;10:808.
[137] Yao X, Zou S, Fan S, Niu Q, Zhang Y. Bioinspired silk fibroin materials: from silk building blocks extraction and reconstruction to advanced biomedical applications. Mater Today Bio. 2022;16: 100381.
[138] Zou S, Yao X, Shao H, Reis RL, Kundu SC, Zhang Y. Nonmulberry silk fibroin-based biomaterials: impact on cell behavior regulation and tissue regeneration. Acta Biomater. 2022;153:68.
[139] Holland C, Numata K, Rnjak-Kovacina J, Seib FP. The biomedical use of silk: past, present, future. Adv Healthc Mater. 2019;8: e1800465.
[140] Hou J, Ding Z, Zheng X, Shen Y, Lu Q, Kaplan DL. Tough porous silk nanofiber-derived cryogels with osteogenic and angiogenic capacity for bone repair. Adv Healthc Mater. 2023;12:2203050.
[141] Geng Y, Liu T, Zhao M, Wei H, Yao X, Zhang Y. Silk fibroin/polyacrylamide-based tough 3D printing scaffold with strain sensing ability and chondrogenic activity. Compos Part B Eng. 2024;271: 111173.
[142] Farahani A, Zarei-Hanzaki A, Abedi HR, Tayebi L, Mostafavi E. Polylactic acid piezo-biopolymers: chemistry, structural evolution, fabrication methods, and tissue engineering applications. J Funct Biomater. 2021;12:71.
[143] Wang QS, Yu XY, Chen XM, Gao JM, Shi DK, Shen Y, Tang JY, He JH, Li AN, Yu L, Ding JD. A facile composite strategy to prepare a biodegradable polymer based radiopaque raw material for “visualizable” biomedical implants. ACS Appl Mater Inter. 2022;14:24197.
[144] Liu X, Zhou L, Heng P, Xiao J, Lv J, Zhang Q, Hickey ME, Tu Q, Wang J. Lecithin doped electrospun poly(lactic acid)-thermoplastic polyurethane fibers for hepatocyte viability improvement. Colloid Surface B. 2019;175:264.
[145] Ingavle GC, Leach JK. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. Tissue Eng Part B Rev. 2014;20:277.
[146] Chen YJ, Dong XT, Shafiq M, Myles G, Radacsi N, Mo XM. Recent advancements on three-dimensional electrospun nanofiber scaffolds for tissue engineering. Adv Fiber Mater. 2022;4:959.
[147] Brown JH, Das P, Divito MD, Ivancic D, Tan LP, Wertheim JA. Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater. 2018;73:217.
[148] Ghaedi M, Soleimani M, Shabani I, Duan Y, Lotfi AS. Hepatic differentiation from human mesenchymal stem cells on a novel nanofiber scaffold. Cell Mol Biol Lett. 2012;17:89.
[149] Wang D, Zhang D, Li P, Yang Z, Mi Q, Yu L. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 2021;13:57.
[150] Xu ZP, Wu MR, Ye Q, Chen D, Liu K, Bai H. Spinning from nature: engineered preparation and application of high-performance bio-based fibers. Engineering. 2022;14:100.
[151] Sonseca A, Sahay R, Stepien K, Bukala J, Wcislek A, Mcclain A, Sobolewski P, Sui X, Puskas JE, Kohn J, Wagner HD, El Fray M. Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. Mater Sci Eng C Mater Biol Appl. 2020;108: 110505.
[152] Liu S, Wang X, Zhang Z, Zhang Y, Zhou G, Huang Y, Xie Z, Jing X. Use of asymmetric multilayer polylactide nanofiber mats in controlled release of drugs and prevention of liver cancer recurrence after surgery in mice. Nanomedicine. 2015;11:1047.
[153] Liao Y, Loh CH, Tian M, Wang R, Fane AG. Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Prog Polym Sci. 2018;77:69.
[154] Das P, Divito MD, Wertheim JA, Tan LP. Bioengineered 3D electrospun nanofibrous scaffold with human liver cells to study alcoholic liver disease in vitro. Integr Biol. 2021;13:184.
[155] Bate TSR, Shanahan W, Casillo JP, Grant R, Forbes SJ, Callanan A. Rat liver ECM incorporated into electrospun polycaprolactone scaffolds as a platform for hepatocyte culture. J Biomed Mater Res B Appl Biomater. 2022;110:2612.
[156] Chen PY, Tung SH. One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules. 2017;50:2528.
[157] Zhang ZP, Hu J, Ma PX. Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev. 2012;64:1129.
[158] Luo Y, Xu Y, Wang F, Li C, Wang J, Jin M, Zhu H, Guo Y. Fabrication of a biconnected structure PVB porous heddle via thermally induced phase separation. RSC Adv. 2019;9:14599.
[159] He CL, Nie W, Feng W. Engineering of biomimetic nanofibrous matrices for drug delivery and tissue engineering. J Mater Chem B. 2014;2:7828.
[160] Mao J, Duan S, Song A, Cai Q, Deng X, Yang X. Macroporous and nanofibrous poly(lactide-co-glycolide)(50/50) scaffolds via phase separation combined with particle-leaching. Mater Sci Eng C Mater Biol Appl. 2012;32:1407.
[161] Ying Y, Li B, Liu C, Xiong Z, Bai W, Ma P. Shape-memory ECM-mimicking heparin-modified nanofibrous gelatin scaffold for enhanced bone regeneration in sinus augmentation. ACS Biomater Sci Eng. 2022;8:218.
[162] Zhang C, Dong P, Bai Y, Quan DP. Nanofibrous polyester-polypeptide block copolymer scaffolds with high porosity and controlled degradation promote cell adhesion, proliferation and differentiation. Eur Polym J. 2020;130: 109647.
[163] Torok E, Lutgehetmann M, Bierwolf J, Melbeck S, Dullmann J, Nashan B, Ma PX, Pollok JM. Primary human hepatocytes on biodegradable poly(l-lactic acid) matrices: a promising model for improving transplantation efficiency with tissue engineering. Liver Transpl. 2011;17:104.
[164] German CL, Madihally SV. Type of endothelial cells affects HepaRG cell acetaminophen metabolism in both 2D and 3D porous scaffold cultures. J Appl Toxicol. 2019;39:461.
[165] Bierwolf J, Lutgehetmann M, Feng K, Erbes J, Deichmann S, Toronyi E, Stieglitz C, Nashan B, Ma PX, Pollok JM. Primary rat hepatocyte culture on 3D nanofibrous polymer scaffolds for toxicology and pharmaceutical research. Biotechnol Bioeng. 2011;108:141.
[166] Hajili E, Suo Z, Sugawara A, Asoh TA, Uyama H. Fabrication of chitin monoliths with controllable morphology by thermally induced phase separation of chemically modified chitin. Carbohydr Polym. 2022;275: 118680.
[167] Tang Y, Li M, Lin Y, Wang L, Wu F, Wang X. A novel green diluent for the preparation of poly(4-methyl-1-pentene) membranes via a thermally-induced phase separation method. Membranes. 2021;11:622.
[168] Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119:5298.
[169] Zou SZ, Wang XR, Fan SN, Yao X, Zhang YP, Shao HL. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors. J Mater Chem B. 2021;9:5514.
[170] Cui J, Yu X, Yu B, Yang X, Fu Z, Wan J, Zhu M, Wang X, Lin K. Coaxially fabricated dual-drug loading electrospinning fibrous mat with programmed releasing behavior to boost vascularized bone regeneration. Adv Healthc Mater. 2022;11:2200571.
[171] Capuana E, Lopresti F, Carfi Pavia F, Brucato V, La Carrubba V. Solution-based processing for scaffold fabrication in tissue engineering applications: a brief review. Polymers. 2021;13:2041.
[172] Sabzi E, Abbasi F, Ghaleh H. Interconnected porous nanofibrous gelatin scaffolds prepared via a combined thermally induced phase separation/particulate leaching method. J Biomater Sci Polym Ed. 2021;32:488.
[173] Yao T, Baker MB, Moroni L. Strategies to improve nanofibrous scaffolds for vascular tissue engineering. Nanomaterials. 2020;10:887.
[174] Liang XY, Qi YL, Pan Z, He Y, Liu XN, Cui SQ, Ding JD. Design and preparation of quasi-spherical salt particles as water-soluble porogens to fabricate hydrophobic porous scaffolds for tissue engineering and tissue regeneration. Mater Chem Front. 2018;2:1539.
[175] Wang D, Sun Y, Zhang D, Kong X, Wang S, Lu J, Liu F, Lu S, Qi H, Zhou Q. Root-shaped antibacterial alginate sponges with enhanced hemostasis and osteogenesis for the prevention of dry socket. Carbohydr Polym. 2023;299: 120184.
[176] Liang XY, Gao JM, Xu WK, Wang XL, Shen Y, Tang JY, Cui SQ, Yang XW, Liu QS, Yu L, Ding JD. Structural mechanics of 3D-printed poly(lactic acid) scaffolds with tetragonal, hexagonal and wheel-like designs. Biofabrication. 2019;11: 035009.
[177] Zou SZ, Fan SN, Oliveira AL, Yao X, Zhang YP, Shao HL. 3D Printed gelatin scaffold with improved shape fidelity and cytocompatibility by using Antheraea pernyi silk fibroin nanofibers. Adv Fiber Mater. 2022;4:758.
[178] Feng ZQ, Chu XH, Huang NP, Leach MK, Wang G, Wang YC, Ding YT, Gu ZZ. Rat hepatocyte aggregate formation sson discrete aligned nanofibers of type-I collagen-coated poly(l-lactic acid). Biomaterials. 2010;31:3604.
[179] Liu Y, Zhang L, Wei J, Yan S, Yu J, Li X. Promoting hepatocyte spheroid formation and functions by coculture with fibroblasts on micropatterned electrospun fibrous scaffolds. J Mater Chem B. 2014;2:3029.
[180] Wang T, Feng ZQ, Leach MK, Wu J, Jiang Q. Nanoporous fibers of type-I collagen coated poly(l-lactic acid) for enhancing primary hepatocyte growth and function. J Mater Chem B. 2013;1:339.
[181] Wang C, Zhang Z, Chen B, Gu L, Li Y, Yu S. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J Colloid Interf Sci. 2018;516:332.
[182] Feng ZQ, Chu X, Huang NP, Wang T, Wang Y, Shi X, Ding Y, Gu ZZ. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials. 2009;30:2753.
[183] Chua KN, Lim WS, Zhang P, Lu H, Wen J, Ramakrishna S, Leong KW, Mao HQ. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials. 2005;26:2537.
[184] Chien HW, Lai JY, Tsai WB. Galactosylated electrospun membranes for hepatocyte sandwich culture. Colloid Surf B. 2014;116:576.
[185] Cao J, Cheng Z, Kang L, Lin M, Han L. Patterned nanofiber air filters with high optical transparency, robust mechanical strength, and effective PM(2.5) capture capability. RSC Adv. 2020;10:20155.
[186] Gao YS, Ren X, Du XZ, Wang ZZ, He ZB, Yuan SQ, Pan Z, Zhang Y, Zhi XX, Liu JG. Formation of nano-fibrous patterns on aluminum substrates via photolithographic fabrication of electrospun photosensitive polyimide fibrous membranes. Nanomaterials. 2022;12:2745.
[187] Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y. Tailoring micro/nano-fibers for biomedical applications. Bioact Mater. 2023;19:328.
[188] Yao X, Liu RL, Liang XY, Ding JD. Critical areas of proliferation of single cells on micropatterned surfaces and corresponding cell type dependence. ACS Appl Mater Inter. 2019;11:15366.
[189] Yao X, Peng R, Ding JD. Cell–material interactions revealed via material techniques of surface patterning. Adv Mater. 2013;25:5257.
[190] Yao X, Wang XL, Ding JD. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater. 2021;126:92.
[191] Gu Z, Fan S, Kundu SC, Yao X, Zhang Y. Fiber diameters and parallel patterns: proliferation and osteogenesis of stem cells. Regen Biomater. 2023;10: rbad001.
[192] Bual R, Kimura H, Ikegami Y, Shirakigawa N, Ijima H. Fabrication of liver-derived extracellular matrix nanofibers and functional evaluation in in vitro culture using primary hepatocytes. Materialia. 2018;4:518.
[193] Kang SX, Zhao K, Yu DG, Zheng XL, Huang CX. Advances in biosensing and environmental monitoring based on electrospun nanofibers. Adv Fiber Mater. 2022;4:404.
[194] Deineka V, Sulaieva O, Pernakov M, Korniienko V, Husak Y, Yanovska A, Yusupova A, Tkachenko Y, Kalinkevich O, Zlatska A, Pogorielov M. Hemostatic and tissue regeneration performance of novel electrospun chitosan-based materials. Biomedicines. 2021;9:588.
[195] Li J, Xu W, Li D, Liu T, Zhang YS, Ding J, Chen X. Locally deployable nanofiber patch for sequential drug delivery in treatment of primary and advanced orthotopic hepatomas. ACS Nano. 2018;12:6685.
[196] Keutgen XM, Schadde E, Pommier RF, Halfdanarson TR, Howe JR, Kebebew E. Metastatic neuroendocrine tumors of the gastrointestinal tract and pancreas: a surgeon’s plea to centering attention on the liver. Semin Oncol. 2018;45:232.
[197] Chan SC, Sharr WW, Chan ACY, Chok KSH, Lo CM. Rescue living-donor liver transplantation for liver failure following hepatectomy for hepatocellular carcinoma. Liver Cancer. 2013;2:332.
[198] Mungunsukh O, Mccart EA, Day RM. Hepatocyte growth factor isoforms in tissue repair, cancer, and fibrotic remodeling. Biomedicines. 2014;2:301.
[199] Mohsin S, Shams S, Ali Nasir G, Khan M, Javaid Awan S, Khan SN, Riazuddin S. Enhanced hepatic differentiation of mesenchymal stem cells after pretreatment with injured liver tissue. Differentiation. 2011;81:42.
[200] Adamek B, Zalewska-Ziob M, Strzelczyk JK, Kasperczyk J, Wolkowska-Pokrywa K, Spausta G, Hudziec E, Wiczkowski A, Swietochowska E, Kukla M, Ostrowska Z. Hepatocyte growth factor and epidermal growth factor activity during later stages of rat liver regeneration upon interferon alpha-2b influence. Clin Exp Hepatol. 2017;3:9.
[201] Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. 2005;9:777.
[202] Angelo LS, Kurzrock R. Vascular endothelial growth factor and its relationship to inflammatory mediators. Clin Cancer Res. 2007;13:2825.
[203] Son J, Tae JY, Min SK, Ko Y, Park JB. Fibroblast growth factor-4 maintains cellular viability while enhancing osteogenic differentiation of stem cell spheroids in part by regulating RUNX2 and BGLAP expression. Exp Ther Med. 2013;2020:20.
[204] Johannesson M, Stahlberg A, Ameri J, Sand FW, Norrman K, Semb H. FGF4 and retinoic acid direct differentiation of hESCs into PDX1-expressing foregut endoderm in a time- and concentration-dependent manner. PLoS ONE. 2009;4: e4794.
[205] Kazemnejad S, Allameh A, Soleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N, Jazayery M. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J Gastroenterol Hepatol. 2009;24:278.
[206] Mobarra N, Soleimani M, Ghayour-Mobarhan M, Safarpour S, Ferns GA, Pakzad R, Pasalar P. Hybrid poly-l-lactic acid/poly(epsilon-caprolactone) nanofibrous scaffold can improve biochemical and molecular markers of human induced pluripotent stem cell-derived hepatocyte-like cells. J Cell Physiol. 2019;234:11247.
[207] Farzaneh Z, Pournasr B, Ebrahimi M, Aghdami N, Baharvand H. Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev Rep. 2010;6:601.
[208] Yu M, Wang X, Liu Y, Qiao J. Cytokine release kinetics of concentrated growth factors in different scaffolds. Clin Oral Investig. 2019;23:1663.
[209] De Jonge N, Foolen J, Brugmans MC, Sontjens SH, Baaijens FP, Bouten CV. Degree of scaffold degradation influences collagen (re)orientation in engineered tissues. Tissue Eng Part A. 2014;20:1747.
[210] Maghdouri-White Y, Bowlin GL, Lemmon CA, Dreau D. Mammary epithelial cell adhesion, viability, and infiltration on blended or coated silk fibroin-collagen type I electrospun scaffolds. Mater Sci Eng C Mater Biol Appl. 2014;43:37.
[211] Grant R, Hay DC, Callanan A. A drug-induced hybrid electrospun poly-capro-lactone: cell-derived extracellular matrix scaffold for liver tissue engineering. Tissue Eng Part A. 2017;23:650.
[212] Sowmya B, Hemavathi AB, Panda PK. Poly (epsilon-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review. Prog Biomater. 2021;10:91.
[213] Zhang F, King MW. Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds. Adv Healthc Mater. 2020;9:1901358.
[214] Yi B, Xu Q, Liu W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact Mater. 2022;15:82.
[215] Xu T, Yang R, Ma X, Chen W, Liu S, Liu X, Cai X, Xu H, Chi B. Bionic poly(γ-glutamic acid) electrospun fibrous scaffolds for preventing hypertrophic scars. Adv Healthc Mater. 2019;8:1900123.
[216] Rajendran D, Hussain A, Yip D, Parekh A, Shrirao A, Cho CH. Long-term liver-specific functions of hepatocytes in electrospun chitosan nanofiber scaffolds coated with fibronectin. J Biomed Mater Res A. 2017;105:2119.
[217] Bishi DK, Guhathakurta S, Venugopal JR, Cherian KM, Ramakrishna S. Low frequency magnetic force augments hepatic differentiation of mesenchymal stem cells on a biomagnetic nanofibrous scaffold. J Mater Sci Mater Med. 2014;25:2579.
[218] Tan GZ, Zhou Y. Tunable 3D nanofiber architecture of polycaprolactone by divergence electrospinning for potential tissue engineering applications. Nanomicro Lett. 2018;10:73.
[219] Yang C, Jiang X, Gao X, Wang H, Li L, Hussain N, Xie J, Cheng Z, Li Z, Yan J, Zhong M, Zhao L, Wu H. Saving 80% polypropylene in facemasks by laser-assisted melt-blown nanofibers. Nano Lett. 2022;22:7212.
[220] Gao H, Liu G, Guan J, Wang X, Yu J, Ding B. Biodegradable hydro-charging polylactic acid melt-blown nonwovens with efficient PM0.3 removal. Chem Eng J. 2023;458: 141412.
[221] Zhang J, Wang L, Zhang C, Long X, Zheng Y, Zuo Y, Jiao F. MnO-mineralized oxidized-polypropylene membranes for highly efficient oil/water separation. Sep Purif Technol. 2021;276: 119343.
[222] Feng Y, Wang N, He T, He R, Chen M, Yang L, Zhang S, Zhu S, Zhao Q, Ma J, Chen S, Li J. Ag/Zn galvanic couple cotton nonwovens with breath-activated electroactivity: a possible antibacterial layer for personal protective face masks. ACS Appl Mater Inter. 2021;13:59196.
[223] Li Z, Cui Z, Zhao L, Hussain N, Zhao Y, Yang C, Jiang X, Li L, Song J, Zhang B, Cheng Z, Wu H. High-throughput production of kilogram-scale nanofibers by Karman vortex solution blow spinning. Sci Adv. 2022;8: eabn3690.
[224] Li H, Zhang H, Hu JJ, Wang GF, Cui JQ, Zhang YF, Zhen Q. Facile preparation of hydrophobic PLA/PBE micro-nanofiber fabrics via the melt-blown process for high-efficacy oil/water separation. Polymers. 2022;14:1667.
[225] Yao X, Ding J. Effects of microstripe geometry on guided cell migration. ACS Appl Mater Inter. 2020;12:27971.
[226] Yao X, Fan S, Song L, Zhang Y. Role of angiogenesis in bladder tissue engineering. In: Kargozar S, Mozafari M, editors. Biomaterials for vasculogenesis and angiogenesis. Cambridge: Woodhead Publishing; 2022. p. 463–90.
[227] Jin Y, Zhang J, Xu Y, Yi K, Li F, Zhou H, Wang H, Chan HF, Lao YH, Lv S, Tao Y, Li M. Stem cell-derived hepatocyte therapy using versatile biomimetic nanozyme incorporated nanofiber-reinforced decellularized extracellular matrix hydrogels for the treatment of acute liver failure. Bioact Mater. 2023;28:112.
[228] Lebaudy E, Fournel S, Lavalle P, Vrana NE, Gribova V. Recent advances in antiinflammatory material design. Adv Healthc Mater. 2021;10:2001373.
[229] Pitkin Z. New phase of growth for xenogeneic-based bioartificial organs. Int J Mol Sci. 2016;17:1593.
[230] Kandel RA, Grynpas M, Pilliar R, Lee J, Wang J, Waldman S, Zalzal P, Hurtig M. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model. Biomaterials. 2006;27:4120.
[231] Gwon Y, Kim W, Park S, Kim YK, Kim H, Kim MS, Kim J. Tissue-engineered tendon nano-constructs for repair of chronic rotator cuff tears in large animal models. Bioeng Transl Med. 2023;8: e10376.