• Journal of Synthetic Crystals
  • Vol. 53, Issue 12, 2181 (2024)
LI Xia, YAO Mengqin*, and LIU Fei
Author Affiliations
  • College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
  • show less
    DOI: Cite this Article
    LI Xia, YAO Mengqin, LIU Fei. Preparation of Multi-Morphology TiO2 and Its Photocatalytic Degradation of Tetracycline[J]. Journal of Synthetic Crystals, 2024, 53(12): 2181 Copy Citation Text show less
    References

    [1] ZHENG Z Y, TIAN S, FENG Y X, et al. Recent advances of photocatalytic coupling technologies for wastewater treatment[J]. Chinese Journal of Catalysis, 2023, 54: 88-136.

    [2] LONG Z Q, LI Q G, WEI T, et al. Historical development and prospects of photocatalysts for pollutant removal in water[J]. Journal of Hazardous Materials, 2020, 395: 122599.

    [3] LICCARDO L, BORDIN M, SHEVERDYAEVA P M, et al. Surface defect engineering in colored TiO2 hollow spheres toward efficient photocatalysis[J]. Advanced Functional Materials, 2023, 33(22): 2370138.

    [4] GANIYU S O, SABLE S, GAMAL EL-DIN M. Advanced oxidation processes for the degradation of dissolved organics in produced water: a review of process performance, degradation kinetics and pathway[J]. Chemical Engineering Journal, 2022, 429: 132492.

    [6] LI Z L, LI Z Q, ZUO C L, et al. Application of nanostructured TiO2 in UV photodetectors: a review[J]. Advanced Materials, 2022, 34(28): 2109083.

    [7] DONG Y S, FEI X N, ZHOU Y Z. Synthesis and photocatalytic activity of mesoporous-(001) facets TiO2 single crystals[J]. Applied Surface Science, 2017, 403: 662-669.

    [8] QUEIRZ A C B, SANTOS A P B, QUEIROZ T S, et al. Ciprofloxacin photodegradation by CeO2 nanostructures with different morphologies[J]. Water, Air, & Soil Pollution, 2023, 234(7): 415.

    [10] XING X Y, MA Y X, LI J, et al. Facile one-pot synthesis and photocatalytic properties of hierarchically structural BiVO4 with different morphologies[J]. CrystEngComm, 2014, 16(44): 10218-10226.

    [11] LIU J W, YOU F T, HE B W, et al. Directing the architecture of surface-clean Cu2O for CO electroreduction[J]. Journal of the American Chemical Society, 2022, 144(27): 12410-12420.

    [12] TANG M E, TONG Q W, LI Y M, et al. Effective and selective electrocatalytic nitrate reduction to ammonia on urchin-like and defect-enriched titanium oxide microparticles[J]. Chinese Chemical Letters, 2023, 34(12): 108410.

    [13] LI B W, LI Q Y, GUPTA B, et al. Boosting visible-light-driven catalytic hydrogen evolution via surface Ti3+ and bulk oxygen vacancies in urchin-like hollow black TiO2 decorated with RuO2 and Pt dual cocatalysts[J]. Catalysis Science & Technology, 2020, 10(23): 7914-7921.

    [14] WANG Y L, HE W J, XIONG J, et al. MIL-68 (In)-derived In2O3@TiO2 S-scheme heterojunction with hierarchical hollow structure for selective photoconversion of CO2 to hydrocarbon fuels[J]. Fuel, 2023, 331: 125719.

    [16] XU S, GAO Q, HU Z Y, et al. CdS-SH/TiO2 heterojunction photocatalyst significantly improves selectivity for C—O bond breaking in lignin models[J]. ACS Catalysis, 2023, 13(21): 13941-13954.

    [17] NIU X D, LIU S, MEN Y, et al. TiO2 supported Pd nanoclusters with surface defects toward highly efficient hydrogenation of quinone to hydroquinone under mild conditions[J]. Molecular Catalysis, 2022, 529: 112521.

    [18] CHOU C S, GUO M G, LIU K H, et al. Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell[J]. Applied Energy, 2012, 92: 224-233.

    [19] WAN P P, HOOD Z D, ADHIKARI S P, et al. Enhancing the photoresponse and photocatalytic properties of TiO2 by controllably tuning defects across {101} facets[J]. Applied Surface Science, 2018, 434: 711-716.

    [21] XU Z J, MA R X, ZHANG C, et al. A novel quaternary ammonium structure of carbon dots modified TiO2 for fast reduction of Cr(Ⅵ) over a wide pH range under sunlight[J]. Chemical Engineering Journal, 2024, 489: 151363.

    [22] LERTTHANAPHOL N, PIENUTSA N, CHUSRI K, et al. One-step hydrothermal synthesis of precious metal-doped titanium dioxide-graphene oxide composites for photocatalytic conversion of CO2 to ethanol[J]. ACS Omega, 2021, 6(51): 35769-35779.

    [23] LAN K, WANG R C, WEI Q L, et al. Stable Ti3+ defects in oriented mesoporous titania frameworks for efficient photocatalysis[J]. Angewandte Chemie International Edition, 2020, 59(40): 17676-17683.

    [24] LIU W, WANG Z H, TANG X H, et al. Construction of ultrasensitive surface-enhanced Raman scattering substates based on TiO2 aerogels[J]. Advanced Optical Materials, 2023, 11(21): 2300730.

    [26] XIE J L, WANG S X, LU T M, et al. Evaluating high temperature photoelectrocatalysis of TiO2 model photoanode[J]. Journal of Colloid and Interface Science, 2023, 645: 765-774.

    [27] ZHU W C, CHEN H, ZHANG M J, et al. Defect engineering in oxides by liquid Na-K alloy for oxygen evolution reaction[J]. Applied Surface Science, 2021, 544: 148813.

    [28] LI Y F, CHEN T Y, ZHAO S Q, et al. Engineering cobalt oxide with coexisting cobalt defects and oxygen vacancies for enhanced catalytic oxidation of toluene[J]. ACS Catalysis, 2022, 12(9): 4906-4917.

    [29] HAO L, HUANG H W, ZHANG Y H, et al. Oxygen vacant semiconductor photocatalysts[J]. Advanced Functional Materials, 2021, 31(25): 2100919.

    [30] OWOLABI T O, QAHTAN T F, ABIDEMI O R, et al. Bismuth oxychloride photocatalytic wide band gap adjustment through oxygen vacancy regulation using a hybrid intelligent computational method[J]. Materials Chemistry and Physics, 2022, 290: 126524.

    [31] ZHANG X D, YUE K, RAO R Z, et al. Synthesis of acidic MIL-125 from plastic waste: significant contribution of N orbital for efficient photocatalytic degradation of chlorobenzene and toluene[J]. Applied Catalysis B: Environmental, 2022, 310: 121300.

    [32] ZHANG X D, BI F K, ZHU Z Q, et al. The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: a combined experimental and theoretical investigation[J]. Applied Catalysis B: Environmental, 2021, 297: 120393.

    [33] SHAO J, SHENG W C, WANG M S, et al. In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency[J]. Applied Catalysis B: Environmental, 2017, 209: 311-319.

    [34] WANG J L, WANG K, HE Z H, et al. Solvent-induced synthesis of hierarchical TiO2 nanoflowers with tunable morphology by monolayer self-assembly for probing the photocatalytic performance[J]. Journal of Nanostructure in Chemistry, 2022, 12(6): 1075-1087.

    LI Xia, YAO Mengqin, LIU Fei. Preparation of Multi-Morphology TiO2 and Its Photocatalytic Degradation of Tetracycline[J]. Journal of Synthetic Crystals, 2024, 53(12): 2181
    Download Citation