[1] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 100. A Review of Human Carcinogens. Part D: Radiation. International Agency for Research on Cancer, Lyon (2012)
[2] Cherrie, J.W., Cherrie, M.P.C.: Workplace exposure to UV radiation and strategies to minimize cancer risk. Br. Med. Bull. 144(1), 45–56 (2022)
[3] McKenzie, R.L., Aucamp, P.J., Bais, A.F., Bjrn, L.O., Ilyas, M., Madronich, S.: Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10(2), 182–198 (2011)
[4] Barnes, P.W., Robson, T.M., Neale, P.J., Williamson, C.E., Zepp, R.G., Madronich, S., Wilson, S.R., Andrady, A.L., Heikkil, A.M., Bernhard, G.H., Bais, A.F., Neale, R.E., Bornman, J.F., Jansen, M.A.K., Klekociuk, A.R., Martinez-Abaigar, J., Robinson, S.A., Wang, Q.W., Banaszak, A.T., Hder, D.P., Hylander, S., Rose, K.C., Wngberg, S.., Foereid, B., Hou, W.C., Ossola, R., Paul, N.D., Ukpebor, J.E., Andersen, M.P.S., Longstreth, J., Schikowski, T., Solomon, K.R., Sulzberger, B., Bruckman, L.S., Pandey, K.K., White, C.C., Zhu, L., Zhu, M., Aucamp, P.J., Liley, J.B., McKenzie, R.L., Berwick, M., Byrne, S.N., Hollestein, L.M., Lucas, R.M., Olsen, C.M., Rhodes, L.E., Yazar, S., Young, A.R.: Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochem. Photobiol. Sci. 21(3), 275–301 (2022)
[5] Fernndez-Marchante, C.M., Souza, F.L., Milln, M., Lobato, J., Rodrigo, M.A.: Does intensification with UV light and US improve the sustainability of electrolytic waste treatment processes? J. Environ. Manage. 279, 111597 (2021)
[6] EPA 832-F-99-064 Wastewater Technology Fact Sheet Ultraviolet Disinfection. United States Environmental Protection Agency (1999)
[7] Raeiszadeh, M., Adeli, B.: A critical review on ultraviolet disinfection systems against COVID-19 outbreak: applicability, validation, and safety considerations. ACS Photonics 7(11), 2941–2951 (2020)
[8] Ramos, C.C.R., Roque, J.L.A., Sarmiento, D.B., Suarez, L.E.G., Sunio, J.T.P., Tabungar, K.I.B., Tengco, G.S.C., Rio, P.C., Hilario, A.L.: Use of ultraviolet-C in environmental sterilization in hospitals: a systematic review on efficacy and safety. Int. J. Health Sci. (Qassim) 14, 52–65 (2020)
[9] Bagheri, A., Jin, J.: Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 1(4), 593–611 (2019)
[10] Weller, R.B., Macintyre, I.M., Melville, V., Farrugia, M., Feelisch, M., Webb, D.J.: The effect of daily UVA phototherapy for 2 weeks on clinic and 24-h blood pressure in individuals with mild hypertension. J. Hum. Hypertens. 37(7), 548–553 (2022)
[11] Sidbury, R., Davis, D.M., Cohen, D.E., Cordoro, K.M., Berger, T.G., Bergman, J.N., Chamlin, S.L., Cooper, K.D., Feldman, S.R., Hanifin, J.M., Krol, A., Margolis, D.J., Paller, A.S., Schwarzenberger, K., Silverman, R.A., Simpson, E.L., Tom, W.L., Williams, H.C., Elmets, C.A., Block, J., Harrod, C.G., Begolka, W.S., Eichenfield, L.F.: Guidelines of care for the management of atopic dermatitis. J. Am. Acad. Dermatol. 71(2), 327–349 (2014)
[12] Childress, K.K., Kim, K., Glugla, D.J., Musgrave, C.B., Bowman, C.N., Stansbury, J.W.: Independent control of singlet oxygen and radical generation via irradiation of a two-color photosensitive molecule. Macromolecules 52(13), 4968–4978 (2019)
[13] van der Laan, H.L., Burns, M.A., Scott, T.F.: Volumetric photopolymerization confinement through dual-wavelength photoinitiation and photoinhibition. ACS Macro Lett. 8(8), 899–904 (2019)
[14] Schlotthauer, T., Nitsche, J., Middendorf, P.: Evaluation of UV post-curing depth for homogenous cross-linking of stereolithography parts. Rapid Prototyping J. 27(10), 1910–1916 (2021)
[15] Zhang, Y., Sun, X., Aphalo, P.J., Zhang, Y., Cheng, R., Li, T.: Ultraviolet-A1 radiation induced a more favorable light-intercepting leaf-area display than blue light and promoted plant growth. Plant Cell Environ. 47(1), 197–212 (2024)
[16] Mariz-Ponte, N., Mendes, R.J., Sario, S., Correia, C.V., Correia, C.M., Moutinho-Pereira, J., Melo, P., Dias, M.C., Santos, C.: Physiological, biochemical and molecular assessment of UV-A and UV-B supplementation in solanum lycopersicum. Plants 10(5), 918 (2021)
[17] Rabek, J.F.: Polymer photodegradation. Springer Netherlands, Dordrecht (1995)
[18] Rajan, A., Kaur, G., Paliwal, A., Yadav, H.K., Gupta, V., Tomar, M.: Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors. J. Phys. D Appl. Phys. 47(42), 425102 (2014)
[19] Sang, L., Liao, M., Sumiya, M.: A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors (Basel) 13(8), 10482–10518 (2013)
[20] Ye, Q., Zhang, X., Yao, R., Luo, D., Liu, X., Zou, W., Guo, C., Xu, Z., Ning, H., Peng, J.: Research and progress of transparent, flexible tin oxide ultraviolet photodetector. Crystals (Basel) 11(12), 1479 (2021)
[21] Zhou, X., Lu, Z., Zhang, L., Ke, Q.: Wide-bandgap all-inorganic lead-free perovskites for ultraviolet photodetectors. Nano Energy 117, 108908 (2023)
[22] Zou, W., Sastry, M., Gooding, J.J., Ramanathan, R., Bansal, V.: Recent advances and a roadmap to wearable UV sensor technologies. Adv. Mater. Technol. 5(4), 1901036 (2020)
[23] Kanellis, V.G.: Ultraviolet radiation sensors: a review. Biophys. Rev. 11(6), 895–899 (2019)
[24] Huang, X., Chalmers, A.N.: Review of wearable and portable sensors for monitoring personal solar UV exposure. Ann. Biomed. Eng. 49(3), 964–978 (2021)
[25] Zhang, Z., Geng, Y., Cao, S., Chen, Z., Gao, H., Zhu, X., Zhang, X., Wu, Y.: Ultraviolet photodetectors based on polymer microwire arrays toward wearable medical devices. ACS Appl. Mater. Interfaces 14(36), 41257–41263 (2022)
[26] Henning, A., Downs, J.N., Vanos, J.K.: Wearable ultraviolet radiation sensors for research and personal use. Int. J. Biometeorol. 66, 627–640 (2022)
[27] Zhang, P., Carrillo Segura, S., Boldini, A., Di Trolio, P., Ohanian, O.J., III., Porfiri, M.: A photochromic nylon webbing for ultra-violet light sensing. Smart Mater. Struct. 30(8), 085015 (2021)
[28] Wang, W., Tian, S., Lu, J., Zheng, Y., Yan, Z., Wang, D.: Highly sensitive photoresponsive polyamide 6 nanofibrous membrane containing embedded spiropyran. J. Mater. Sci. 56(33), 18775–18794 (2021)
[29] Bao, B., Fan, J., Wang, W., Yu, D.: Photochromic cotton fabric prepared by spiropyran-ternimated water polyurethane coating. Fibers Polym. 21(4), 733–742 (2020)
[30] Araki, H., Kim, J., Zhang, S., Banks, A., Crawford, K.E., Sheng, X., Gutruf, P., Shi, Y., Pielak, R.M., Rogers, J.A.: Materials and device designs for an epidermal UV colorimetric dosimeter with near field communication capabilities. Adv. Funct. Mater. 27(2), 1604465 (2017)
[31] Qi, Y., Zheng, J.: An Azo-PDMS-based wearable UV sensor with the optimized photo response mode for dual sensing and synchronous detection. Sci. China Technol. Sci. 65, 179–190 (2021)
[32] Chen, Y., Cao, Z., Zhang, J., Liu, Y., Yu, D., Guo, X.: Wearable ultraviolet sensor based on convolutional neural network image processing method. Sens. Actuators A Phys. 338, 113402 (2022)
[33] Fan, S., Lam, Y., Yang, J., Bian, X., Xin, J.H.: Development of photochromic poly(azobenzene)/PVDF fibers by wet spinning for intelligent textile engineering. Surf. Interfaces 34, 102383 (2022)
[34] Fang, W., Sairanen, E., Vuori, S., Rissanen, M., Norrbo, I., Lastusaari, M., Sixta, H.: UV-sensing cellulose fibers manufactured by direct incorporation of photochromic minerals. ACS Sustain. Chem. & Eng. 9(48), 16338–16346 (2021)
[35] Finny, A.S., Jiang, C., Andreescu, S.: 3D printed hydrogel-based sensors for quantifying UV exposure. ACS Appl. Mater. Interfaces 12(39), 43911–43920 (2020)
[36] Lee, M.E., Armani, A.M.: Flexible UV exposure sensor based on UV responsive polymer. ACS Sens. 1(10), 1251–1255 (2016)
[37] Yang, Z., Zhao, J., Liang, C., Jiang, H.: Materials and device design for epidermal UV sensors with real-time, skin-color specific, and naked-eye quasi-quantitative monitoring capabilities. Adv. Mater. Technol. 8(7), 2201481 (2023)
[38] Yimyai, T., Crespy, D., Pena-Francesch, A.: Self-healing photochromic elastomer composites for wearable UV-sensors. Adv. Funct. Mater. 33(20), 2213717 (2023)
[39] Chen, G.Y., Wang, Z.: Towards extremely sensitive ultraviolet-light sensors employing photochromic optical microfiber. J. Sens. 2015, 1–7 (2015)
[40] Ock, K., Jo, N., Kim, J., Kim, S., Koh, K.: Thin film optical waveguide type UV sensor using a photochromic molecular device, spirooxazine. Synth. Met. 117(1–3), 131–133 (2001)
[41] Song, I.S., Kim, C.Y., Han, A.R., Yoo, J.S., Lee, S.Y., Kim, H.K., Ahn, T.J.: Azobenzene polymer waveguide for UV sensors. In: 2012 Photonics Global Conference (PGC). pp. 1–3. IEEE, Singapore (2012)
[42] Yoon, J.K., Seo, G.W., Cho, K.M., Kim, E.S., Kim, S.H., Kang, S.W.: Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer. IEEE Photonics Technol. Lett. 15(6), 837–839 (2003)
[43] Kortekaas, L., Browne, W.R.: The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 48(12), 3406–3424 (2019)
[44] Klajn, R.: Spiropyran-based dynamic materials. Chem. Soc. Rev. 43(1), 148–184 (2014)
[45] Crano, J.C., Guglielmetti, R.J.: eds.: Chapter 2: photodegradation of organic photochromes. In: Organic Photochromic and Thermochromic Compounds Volume 2: Physicochemical Studies, Biological Applications, and Thermochromism, pp. 65–166. Kluwer Academic Publishers, New York (2002)
[46] Virlogeux, F., Bianchini, D., Delor-Jestin, F., Baba, M., Lacoste, J.: Evaluation of cross-linking after accelerated photo-ageing of silicone rubber. Polym. Int. 53(2), 163–168 (2004)
[47] Stevenson, I., David, L., Gauthier, C., Arambourg, L., Davenas, J., Vigier, G.: Influence of SiO2 fillers on the irradiation ageing of silicone rubbers. Polymer (Guildf.) 42(22), 9287–9292 (2001)
[48] Minkin, V.I.: Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem. Rev. 104(5), 2751–2776 (2004)
[49] Berman, E., Fox, R.E., Thomson, F.D.: Photochromic spiropyrans. I. The effect of substituents on the rate of ring closure. J. Am. Chem. Soc. 81(21), 5605–5608 (1959)
[50] The Dow Chemical Company: Technical Data Sheet: SYLGARDTM 184 Silicone Elastomer (2017)
[51] Yu, C.U., Mark, J.E.: Specific solvent effects in swollen polymer networks. Macromolecules 7(2), 229–232 (1974)
[52] Kim, D., Kim, S.H., Park, J.Y.: Floating-on-water fabrication method for thin polydimethylsiloxane membranes. Polymers (Basel) 11(8), 1264 (2019)
[53] Nam, Y.S., Yoo, I., Yarimaga, O., Park, I.S., Park, D.H., Song, S., Kim, J.M., Lee, C.W.: Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing. Chem. Commun. (Camb.) 50(32), 4251–4254 (2014)
[54] Tian, W., Tian, J.: An insight into the solvent effect on photo-, solvato-chromism of spiropyran through the perspective of intermolecular interactions. Dyes Pigments 105, 66–74 (2014)
[55] Qiao, C., Zhang, C., Zhou, Z., Dong, H., Du, Y., Yao, J., Zhao, Y.S.: A photoisomerization-activated intramolecular chargetransfer process for broadband-tunable single-mode microlasers. Angew. Chem. Int. Ed. 59(37), 15992–15996 (2020)
[56] Wallikewitz, B.H., Nikiforov, G.O., Sirringhaus, H., Friend, R.H.: A nanoimprinted, optically tuneable organic laser. Appl. Phys. Lett. 100(17), 173301 (2012)
[57] Lin, L., Wang, M., Wei, X., Peng, X., Xie, C., Zheng, Y.: Photoswitchable Rabi splitting in hybrid plasmon–waveguide modes. Nano Lett. 16(12), 7655–7663 (2016)
[58] Zheng, Y.B., Kiraly, B., Cheunkar, S., Huang, T.J., Weiss, P.S.: Incident-angle-modulated molecular plasmonic switches: a case of weak exciton–plasmon coupling. Nano Lett. 11(5), 2061–2065 (2011)
[59] Cai, D., Heise, H.M.: Spectroscopic aspects of polydimethylsiloxane (PDMS) used for optical waveguides. In: Koleyski, A., Krl, M. (eds.) Molecular Spectroscopy—Experiment and Theory. Challenges and Advances in Computational Chemistry and Physics. pp. 401–425. Springer, Switzerland (2019)
[60] Sharma, K., Morlec, E., Valet, S., Camenzind, M., Weisse, B., Rossi, R.M., Sorin, F., Boesel, L.F.: Polydimethylsiloxane based soft polymer optical fibers: from the processing-property relationship to pressure sensing applications. Mater. Des. 232, 112115 (2023)
[61] Kee, J.S., Poenar, D.P., Neuzil, P., Yobas, L.: Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements. Sens. Actuators B Chem. 134(2), 532–538 (2008)
[62] Papakonstantinou, I., Wang, K., Selviah, D.R., Fernndez, F.A.: Transition, radiation and propagation loss in polymer multimode waveguide bends. Opt. Express 15(2), 669 (2007)
[63] Suar, M., Baran, M., Gnther, A., Roth, B.: Combined thermomechanical and optical simulations of planar-optical polymer waveguides. J. Opt. 22(12), 125801 (2020)
[64] Gnther, A., Baran, M., Garg, R., Roth, B., Kowalsky, W.: Analysis of the thermal behavior of self-written waveguides. Opt. Lasers Eng. 151, 106922 (2022)
[65] Zhang, Z., Zhao, P., Lin, P., Sun, F.: Thermo-optic coefficients of polymers for optical waveguide applications. Polymer (Guildf.) 47(14), 4893–4896 (2006)
[66] Zhu, Z., Liu, L., Liu, Z., Zhang, Y., Zhang, Y.: Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt. Lett. 42(15), 2948 (2017)
[67] Information about Dow Corning brand Silicone Encapsulants. Dow Corning Corporation, USA (2005)
[68] Gupta, N.S., Lee, K.S., Labouriau, A.: Tuning thermal and mechanical properties of polydimethylsiloxane with carbon fibers. Polymers (Basel) 13(7), 1141 (2021)
[69] Mller, A., Wapler, M.C., Wallrabe, U.: A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS. Soft Matter 15(4), 779–784 (2019)
[70] Zhang, G., Sun, Y., Qian, B., Gao, H., Zuo, D.: Experimental study on mechanical performance of polydimethylsiloxane (PDMS) at various temperatures. Polym. Test. 90, 106670 (2020)
[71] Lin, J.S.: Interaction between dispersed photochromic compound and polymer matrix. Eur. Polym. J. 39(8), 1693–1700 (2003)
[72] Sworakowski, J., Janus, K., Neprek, S.: Kinetics of photochromic reactions in condensed phases. Adv. Colloid Interface Sci. 116(1–3), 97–110 (2005)