• Chinese Optics Letters
  • Vol. 23, Issue 1, 013601 (2025)
Zhishen Zhang1, Xiaobo Heng2, Shuai Gao1, Li Zhang1, Fei Lin1, Weicheng Chen1、*, and Jiulin Gan3、**
Author Affiliations
  • 1Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
  • 2GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
  • 3State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China
  • show less
    DOI: 10.3788/COL202523.013601 Cite this Article Set citation alerts
    Zhishen Zhang, Xiaobo Heng, Shuai Gao, Li Zhang, Fei Lin, Weicheng Chen, Jiulin Gan, "Nano-thick SiO2 channel for subwavelength plasmonic orbital angular momentum mode transmission," Chin. Opt. Lett. 23, 013601 (2025) Copy Citation Text show less
    References

    [1] H. C. Zhang, L. P. Zhang, P. H. He et al. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light Sci. Appl., 9, 113(2020).

    [2] X. Ou, Y. Yang, F. Sun et al. Wide-range, ultra-compact, and high-sensitivity ring resonator biochemical sensor with CMOS-compatible hybrid plasmonic waveguide. Opt. Express, 29, 19058(2021).

    [3] Y. Li, C. Argyropoulos. Multiqubit entanglement and quantum phase gates with epsilon-near-zero plasmonic waveguides. Appl. Phys. Lett., 119, 211104(2021).

    [4] J. Zhang, Y. Kang, X. Guo et al. High-power continuous-wave optical waveguiding in a silica micro/nanofibre. Light Sci. Appl., 12, 89(2023).

    [5] Y. Fang, M. Sun. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl., 4, e294(2015).

    [6] S. Kim, R. Yan. Recent developments in photonic, plasmonic and hybrid nanowire waveguides. J. Mater. Chem. C, 6, 11795(2018).

    [7] Á. Barreda, F. Vitale, A. E. Minovich et al. Applications of hybrid metal-dielectric nanostructures: state of the art. Adv. Photonics Res., 3, 2100286(2022).

    [8] J. Yao, H. Fang, Y. Li et al. Superplastic nanomolding of aluminum waveguides for subwavelength light routing, splitting, and encryption. ACS Nano, 17, 17342(2023).

    [9] C. L. Smith, N. Stenger, A. Kristensen et al. Gap and channeled plasmons in tapered grooves: a review. Nanoscale, 7, 9355(2015).

    [10] Y. Bian, Q. Ren, L. Kang et al. Deep-subwavelength light transmission in hybrid nanowire-loaded silicon nano-rib waveguides. Photon. Res., 6, 37(2018).

    [11] C.-C. Huang, R.-J. Chang, C.-C. Huang. Nanostructured hybrid plasmonic waveguide in a slot structure for high-performance light transmission. Opt. Express, 29, 29341(2021).

    [12] M. Ono, M. Hata, M. Tsunekawa et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics, 14, 37(2020).

    [13] J. Wang, J. Liu, S. Li et al. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics, 11, 645(2022).

    [14] S. Liu, Y. Lou, J. Jing. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun., 11, 3875(2020).

    [15] B. B. Yousif, E. E. Elsayed. Performance enhancement of an orbital-angular-momentum-multiplexed free-space optical link under atmospheric turbulence effects using spatial-mode multiplexing and hybrid diversity based on adaptive MIMO equalization. IEEE Access, 7, 84401(2019).

    [16] E. E. Elsayed, B. B. Yousif. Performance enhancement of the average spectral efficiency using an aperture averaging and spatial-coherence diversity based on the modified-PPM modulation for MISO FSO links. Opt. Commun., 463, 125463(2020).

    [17] E. E. Elsayed. Atmospheric turbulence mitigation of MIMO-RF/FSO DWDM communication systems using advanced diversity multiplexing with hybrid N-SM/OMI M-ary spatial pulse-position modulation schemes. Opt. Commun., 562, 130558(2024).

    [18] Y. Weng, Z. Pan. Orbital angular momentum based sensing and their applications: a review. J. Lightwave Technol., 41, 2007(2023).

    [19] D. Paul, D. K. Sharma, G. V. P. Kumar. Simultaneous detection of spin and orbital angular momentum of light through scattering from a single silver nanowire. Laser Photon. Rev., 16, 2200049(2022).

    [20] J. Wang, C. Cai, F. Cui et al. Tailoring light on three-dimensional photonic chips: a platform for versatile OAM mode optical interconnects. Adv. Photonics, 5, 036004(2023).

    [21] A. Liu, M. Wu, R. Zhuang et al. On-chip generation of the reconfigurable orbital angular momentum with high order. Opt. Express, 28, 17957(2020).

    [22] Z. Zhang, S. Gao, L. Zhang et al. All-fiberized sorter for nondestructively splitting the orbital angular momentum modes. Opt. Commun., 560, 130462(2024).

    [23] F. C. Ni, Z. T. Xie, X.-D. Hu et al. Selective angular momentum generator based on a graphene hybrid plasmonic waveguide. J. Lightwave Technol., 37, 5486(2019).

    [24] J. Lee, S. Kim. Directional coupler design for orbital angular momentum mode-based photonic integrated circuits. Opt. Express, 28, 30085(2020).

    [25] D. S. Han, M. S. Kang. Reconfigurable generation of optical vortices based on forward stimulated intermodal Brillouin scattering in subwavelength-hole photonic waveguides. Photon. Res., 7, 754(2019).

    [26] Y. Wang, X. Ma, M. Pu et al. Transfer of orbital angular momentum through sub-wavelength waveguides. Opt. Express, 23, 2857(2015).

    [27] C. Huang, X. Chen, A. O. Oladipo et al. Generation of subwavelength plasmonic nanovortices via helically corrugated metallic nanowires. Sci. Rep., 5, 13089(2015).

    [28] J.-W. Liaw, S.-Y. Mao, J.-Y. Luo et al. Surface plasmon polaritons of higher-order mode and standing waves in metallic nanowires. Opt. Express, 29, 18876(2021).

    [29] D. Garoli, P. Zilio, Y. Gorodetski et al. Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip. Nano Lett., 16, 6636(2016).

    [30] L. Tong, J. Lou, E. Mazur. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express, 12, 1025(2004).

    [31] Z. Zhang, J. Gan, X. Heng et al. Low-crosstalk orbital angular momentum fiber coupler design. Opt. Express, 25, 11200(2017).

    [32] Z. Zhang, J. Gan, X. Heng et al. High order vector mode coupling mechanism based on mode matching method. J. Opt., 19, 065702(2017).

    [33] S. Zheng, J. Wang. On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides. Opt. Express, 25, 18492(2017).

    [34] H. Gan, S. Li, Y. Zhang et al. Electrospun composite polymer electrolyte membrane enabled with silica-coated silver nanowires. Eur. J. Inorg. Chem., 2021, 4639(2021).

    Zhishen Zhang, Xiaobo Heng, Shuai Gao, Li Zhang, Fei Lin, Weicheng Chen, Jiulin Gan, "Nano-thick SiO2 channel for subwavelength plasmonic orbital angular momentum mode transmission," Chin. Opt. Lett. 23, 013601 (2025)
    Download Citation