[1] T Inoue, Zoysa M de, T Asano et al. Realization of dynamic thermal emission control. Nat Mater, 13, 928-931(2014).
[2] Z J Coppens, J G Valentine. Spatial and temporal modulation of thermal emission. Adv Mater, 29, 1701275(2017).
[3] C W J Beenakker. Thermal radiation and amplified spontaneous emission from a random medium. Phys Rev Lett, 81, 1829-1832(1998).
[4] J A Mason, S Smith, D Wasserman. Strong absorption and selective thermal emission from a midinfrared metamaterial. Appl Phys Lett, 98, 241105(2011).
[5] D Jung, S Bank, M L Lee et al. Next-generation mid-infrared sources. J Opt, 19, 123001(2017).
[6] L Palchetti, Natale G Di, G Bianchini. Remote sensing of cirrus cloud microphysical properties using spectral measurements over the full range of their thermal emission. J Geophys Res Atmos, 121, 10804-10819(2016).
[7] Z Fu, D Zhong et al. Scalable asymmetric fabric evaporator for solar desalination and thermoelectricity generation. Adv Sci, 20, e2406474(2024).
[8] R Zhang, Z Song et al. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding. Light Sci Appl, 13, 223(2024).
[9] G Xu, Q Kang et al. Inverse-design laser-infrared compatible stealth with thermal management enabled by wavelength-selective thermal emitter. Appl Therm Eng, 255, 124063(2024).
[10] Z Q Xu, H Luo, H Z Zhu et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting. Nano Lett, 21, 5269-5276(2021).
[11] M U Pralle, N Moelders, M P McNeal et al. Photonic crystal enhanced narrow-band infrared emitters. Appl Phys Lett, 81, 4685-4687(2002).
[12] X L Liu, T Tyler, T Starr et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett, 107, 045901(2011).
[13] A M Morsy, M T Barako, V Jankovic et al. Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films. Sci Rep, 10, 13964(2020).
[14] D Costantini, A Lefebvre, A L Coutrot et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys Rev Appl, 4, 014023(2015).
[15] A V Shchegrov, K Joulain, R Carminati et al. Near-field spectral effects due to electromagnetic surface excitations. Phys Rev Lett, 85, 1548-1551(2000).
[16] R Carminati, J J Greffet. Near-field effects in spatial coherence of thermal sources. Phys Rev Lett, 82, 1660-1663(1999).
[17] E Wolf. Non-cosmological redshifts of spectral lines. Nature, 326, 363-365(1987).
[18] E Wolf, D F V James. Correlation-induced spectral changes. Rep Prog Phys, 59, 771-818(1996).
[19] Gall J Le, M Olivier, J J Greffet. Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton. Phys Rev B, 55, 10105-10114(1997).
[20] J J Greffet, R Carminati, K Joulain et al. Coherent emission of light by thermal sources. Nature, 416, 61-64(2002).
[21] J H Park, S E Han, P Nagpal et al. Observation of thermal beaming from tungsten and molybdenum bull’s eyes. ACS Photon, 3, 494-500(2016).
[22] X Zhang, H Liu, Z G Zhang et al. Controlling thermal emission of phonon by magnetic metasurfaces. Sci Rep, 7, 41858(2017).
[23] X Zhang, Z G Zhang, Q Wang et al. Controlling thermal emission by parity-symmetric fano resonance of optical absorbers in metasurfaces. ACS Photon, 6, 2671-2676(2019).
[24] Zoysa M De, T Asano, K Mochizuki et al. Conversion of broadband to narrowband thermal emission through energy recycling. Nat Photon, 6, 535-539(2012).
[25] X X Liu, Z W Li, Z J Wen et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale, 11, 19742-19750(2019).
[26] Y R Qu, M Y Pan, M Qiu. Directional and spectral control of thermal emission and its application in radiative cooling and infrared light sources. Phys Rev Appl, 13, 064052(2020).
[27] L X Zhu, F Y Liu, H T Lin et al. Angle-selective perfect absorption with two-dimensional materials. Light Sci Appl, 5, e16052(2016).
[28] D A B Miller, L X Zhu, S H Fan. Universal modal radiation laws for all thermal emitters. Proc Natl Acad Sci USA, 114, 4336-4341(2017).
[29] L X Zhu, S H Fan. Near-complete violation of detailed balance in thermal radiation. Phys Rev B, 90, 220301(R)(2014).
[30] B Zhao, Y Shi, J H Wang et al. Near-complete violation of Kirchhoff’s law of thermal radiation with a 0.3 T magnetic field. Opt Lett, 44, 4203-4206(2019).
[31] B Zhao, C Guo, C A C Garcia et al. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals. Nano Lett, 20, 1923-1927(2020).
[32] Y Tsurimaki, X Qian, S Pajovic et al. Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking. Phys Rev B, 101, 165426(2020).
[33] P T Landsberg, G Tonge. Thermodynamic energy conversion efficiencies. J Appl Phys, 51, R1-R20(1980).
[34] M A Green. Time-asymmetric photovoltaics. Nano Lett, 12, 5985-5988(2012).
[35] S Inampudi, J R Cheng, M M Salary et al. Unidirectional thermal radiation from a SiC metasurface. J Opt Soc Am B, 35, 39-46(2018).
[36] B Zhao, J H Wang, Z X Zhao et al. Nonreciprocal thermal emitters using metasurfaces with multiple diffraction channels. Phys Rev Appl, 16, 064001(2021).
[37] J B Yu, R Qin, Y B Ying et al. Asymmetric directional control of thermal emission. Adv Mater, 35, 2302478(2023).
[38] E Lucchi. Applications of the infrared thermography in the energy audit of buildings: a review. Renew Sustain Energy Rev, 82, 3077-3090(2018).
[39] E Sakr, P Bermel. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters. Opt Express, 25, A880-A895(2017).
[40] R Sakakibara, V Stelmakh, W R Chan et al. Practical emitters for thermophotovoltaics: a review. J Photon Energy, 9, 32713-32713(2019).
[41] A P Raman, W Li, S H Fan. Generating light from darkness. Joule, 3, 2679-2686(2019).
[42] A P Raman, M A Anoma, L X Zhu et al. Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515, 540-544(2014).
[43] X B Yin, R G Yang, G Tan et al. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science, 370, 786-791(2020).
[44] B Johns, S Chattopadhyay, J Mitra. Tailoring infrared absorption and thermal emission with ultrathin film interferences in Epsilon-Near-Zero media. Adv Photon Res, 3, 2100153(2022).
[45] J Xu, J Mandal, A P Raman. Broadband directional control of thermal emission. Science, 372, 393-397(2021).
[46] Y B Ying, B Z Ma, J B Yu et al. Whole LWIR directional thermal emission based on ENZ thin films. Laser Photon Rev, 16, 2200018(2022).
[47] S McSherry, A Lenert. Design of a gradient epsilon-near-zero refractory metamaterial with temperature-insensitive broadband directional emission. Appl Phys Lett, 121, 191702(2022).
[48] J S Hwang, J Xu, A P Raman. Simultaneous control of spectral and directional emissivity with gradient Epsilon-Near-Zero InAs photonic structures. Adv Mater, 35, 2302956(2023).
[49] M Bae, D H Kim, S K Kim et al. Transparent energy-saving windows based on broadband directional thermal emission. Nanophotonics, 13, 749-761(2024).
[50] S K Chamoli, W Li, C L Guo et al. Angularly selective thermal emitters for deep subfreezing daytime radiative cooling. Nanophotonics, 11, 3709-3717(2022).
[51] Y B Ying, J B Yu, B Qin et al. Directional thermal emission covering two atmospheric windows. Laser Photon Rev, 17, 2300407(2023).
[52] M Sarkar, M Giteau, M T Enders et al. Lithography-free directional control of thermal emission. Nanophotonics, 13, 763-771(2024).
[53] Q Y Wang, T J Liu, L N Li et al. Ultra-broadband directional thermal emission. Nanophotonics, 13, 793-801(2024).
[54] Z W Fan, T Hwang, S Lin et al. Directional thermal emission and display using pixelated non-imaging micro-optics. Nat Commun, 15, 4544(2024).
[55] M L Brongersma, Y Cui, S H Fan. Light management for photovoltaics using high-index nanostructures. Nat Mater, 13, 451-460(2014).
[56] Y Park, B Zhao, S H Fan. Reaching the ultimate efficiency of solar energy harvesting with a nonreciprocal multijunction solar cell. Nano Lett, 22, 448-452(2022).
[57] S Buddhiraju, P Santhanam, S H Fan. Thermodynamic limits of energy harvesting from outgoing thermal radiation. Proc Natl Acad Sci USA, 115, E3609-E3615(2018).
[58] W Li, S Buddhiraju, S H Fan. Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light Sci Appl, 9, 68(2020).
[59] Z N Zhang, L X Zhu. Nonreciprocal thermal photonics for energy conversion and radiative heat transfer. Phys Rev Appl, 18, 027001(2022).
[60] S Pajovic, Y Tsurimaki, X Qian et al. Intrinsic nonreciprocal reflection and violation of Kirchhoff’s law of radiation in planar type-I magnetic Weyl semimetal surfaces. Phys Rev B, 102, 165417(2020).
[61] Y Park, V S Asadchy, B Zhao et al. Violating Kirchhoff’s law of thermal radiation in semitransparent structures. ACS Photon, 8, 2417-2424(2021).
[62] Y Hadad, J C Soric, A Alu. Breaking temporal symmetries for emission and absorption. Proc Natl Acad Sci USA, 113, 3471-3475(2016).
[63] M Q Liu, C Y Zhao. Near-infrared nonreciprocal thermal emitters induced by asymmetric embedded eigenstates. Int J Heat Mass Transf, 186, 122435(2022).
[64] S J Ghalekohneh, B Zhao. Nonreciprocal solar thermophotovoltaics. Phys Rev Appl, 18, 034083(2022).
[65] Y Park, Z Omair, S H Fan. Nonreciprocal thermophotovoltaic systems. ACS Photon, 9, 3943-3949(2022).
[66] M Q Liu, S Xia, W J Wan et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films. Nat Mater, 22, 1196-1202(2023).
[67] Z N Zhang, L X Zhu. Broadband nonreciprocal thermal emission. Phys Rev Appl, 19, 014013(2023).
[68] K Z Shi, Y W Sun, R Hu et al. Ultra-broadband and wide-angle nonreciprocal thermal emitter based on Weyl semimetal metamaterials. Nanophotonics, 13, 737-747(2024).