• Advanced Photonics Nexus
  • Vol. 3, Issue 6, 066006 (2024)
Chunxu Ding1、†, Rongjun Shao1, Jingwei Li2, Yuan Qu1、3, Linxian Liu4, Qiaozhi He3, Xunbin Wei5、*, and Jiamiao Yang1、3、*
Author Affiliations
  • 1Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, Shanghai, China
  • 2Huawei Technologies Co., Ltd., Shenzhen, China
  • 3Shanghai Jiao Tong University, Institute of Marine Equipment, Shanghai, China
  • 4Shanxi University, School of Automation and Software Engineering, Taiyuan, China
  • 5Peking University, Biomedical Engineering Department and International Cancer Institute, Beijing, China
  • show less
    DOI: 10.1117/1.APN.3.6.066006 Cite this Article Set citation alerts
    Chunxu Ding, Rongjun Shao, Jingwei Li, Yuan Qu, Linxian Liu, Qiaozhi He, Xunbin Wei, Jiamiao Yang, "Optoelectronic reservoir computing based on complex-value encoding," Adv. Photon. Nexus 3, 066006 (2024) Copy Citation Text show less
    References

    [1] P. B. Weerakody et al. A review of irregular time series data handling with gated recurrent neural networks. Neurocomputing, 441, 161-178(2021).

    [2] Y. Jiang et al. Deep learning model based on urban multi-source data for predicting heavy metals (Cu, Zn, Ni, Cr) in industrial sewer networks. J. Hazard. Mater., 432, 128732(2022).

    [3] T. Arcomano et al. A machine learning-based global atmospheric forecast model. Geophys. Res. Lett., 47, e2020GL087776(2020).

    [4] Y. Goldberg. Neural network methods for natural language processing. Synth. Lect. Hum. Lang. Technol., 10, 1-309(2017).

    [5] D. W. Otter, J. R. Medina, J. K. Kalita. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Network Learn. Syst., 32, 604-624(2020).

    [6] M. Taddeo et al. Artificial intelligence and the climate emergency: opportunities, challenges, and recommendations. One Earth, 4, 776-779(2021).

    [7] X. Liang et al. Rotating neurons for all-analog implementation of cyclic reservoir computing. Nat. Commun., 13, 1549(2022).

    [8] N. Talati et al. mMPU: a real processing-in-memory architecture to combat the von Neumann bottleneck, 191-213(2020).

    [9] D. R. Solli, B. Jalali. Analog optical computing. Nat. Photonics, 9, 704-706(2015).

    [10] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [11] J. Feldmann et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [12] T. Zhou et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics, 15, 367-373(2021).

    [13] C. Li et al. The challenges of modern computing and new opportunities for optics. PhotoniX, 2, 20(2021).

    [14] J. Wu et al. Analog optical computing for artificial intelligence. Engineering, 10, 133-145(2021).

    [15] G. Tanaka et al. Recent advances in physical reservoir computing: a review. Neural Network, 115, 100-123(2019).

    [16] K. Vandoorne et al. Toward optical signal processing using photonic reservoir computing. Opt. Express, 16, 11182-11192(2008).

    [17] K. Vandoorne et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun., 5, 3541(2014).

    [18] F. Duport et al. All-optical reservoir computing. Opt. Express, 20, 22783-22795(2012).

    [19] J. Nakayama, K. Kanno, A. Uchida. Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal. Opt. Express, 24, 8679-8692(2016).

    [20] K. Kanno, A. Uchida. Photonic reinforcement learning based on optoelectronic reservoir computing. Sci. Rep., 12, 3720(2022).

    [21] M. Nakajima, K. Tanaka, T. Hashimoto. Scalable reservoir computing on coherent linear photonic processor. Commun. Phys., 4, 20(2021).

    [22] J. Dong et al. Scaling up echo-state networks with multiple light scattering, 448-452(2018).

    [23] J. Bueno et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 5, 756-760(2018).

    [24] P. Antonik et al. Human action recognition with a large-scale brain-inspired photonic computer. Nat. Mach. Intell., 1, 530-537(2019).

    [25] J. Dong et al. Optical reservoir computing using multiple light scattering for chaotic systems prediction. IEEE J. Sel. Top. Quant., 26, 7701012(2019).

    [26] M. Rafayelyan et al. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction. Phys. Rev. X, 10, 041037(2020).

    [27] T. Bu et al. Efficient optical reservoir computing for parallel data processing. Opt. Lett., 47, 3784-3787(2022).

    [28] M. Lukoševičius. A practical guide to applying echo state networks. Neural Networks: Tricks of the Trade: Second Edition, 659-686(2012).

    [29] M. Cucchi et al. Hands-on reservoir computing: a tutorial for practical implementation. Neuromorphic Comput. Eng., 2, 032002(2022).

    [30] S. A. Goorden, J. Bertolotti, A. P. Mosk. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt. Express, 22, 17999-18009(2014).

    [31] R. Shao et al. Volumetric random-access multi-focus scanning based on fast light modulation. Opt. Laser. Eng., 158, 107128(2022).

    [32] H. Jaeger, H. Haas. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science, 304, 78-80(2004).

    Chunxu Ding, Rongjun Shao, Jingwei Li, Yuan Qu, Linxian Liu, Qiaozhi He, Xunbin Wei, Jiamiao Yang, "Optoelectronic reservoir computing based on complex-value encoding," Adv. Photon. Nexus 3, 066006 (2024)
    Download Citation