• Optics and Precision Engineering
  • Vol. 32, Issue 15, 2387 (2024)
Yikai ZANG1, Beibei ZHU2, Lin QIN2, Yao SHANG1, Junhao SHANG1, Zhongdi SHE1, Xiao CHEN3, Junfeng XIAO1, and Jianfeng XU1、*
Author Affiliations
  • 1School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, China
  • 2Shanghai Aerospace Control Technology Research Institute, Shanghai01108, China
  • 3School of Mechanical Engineering, Hubei University of Technology, Wuhan40068, China
  • show less
    DOI: 10.37188/OPE.20243215.2387 Cite this Article
    Yikai ZANG, Beibei ZHU, Lin QIN, Yao SHANG, Junhao SHANG, Zhongdi SHE, Xiao CHEN, Junfeng XIAO, Jianfeng XU. Modeling of removal function and optimization of process parameters for robotic polishing M-ZnS[J]. Optics and Precision Engineering, 2024, 32(15): 2387 Copy Citation Text show less
    Working priniciple of robotic polishing
    Fig. 1. Working priniciple of robotic polishing
    FEA contact model of polishing pad
    Fig. 2. FEA contact model of polishing pad
    Pressure distribution at bottom of pitch pad under different loads
    Fig. 3. Pressure distribution at bottom of pitch pad under different loads
    (a) Comparison of pressure cross-section curves; (b) Comparison of pressure cross-section curve fits for F=5 N
    Fig. 4. (a) Comparison of pressure cross-section curves; (b) Comparison of pressure cross-section curve fits for F=5 N
    Comparison between modified removal function and unmodified removal function with different polishing parameters
    Fig. 5. Comparison between modified removal function and unmodified removal function with different polishing parameters
    Comparison of corrected removal function with polished removal function
    Fig. 6. Comparison of corrected removal function with polished removal function
    Experimental setup
    Fig. 7. Experimental setup
    Removal profile of ZnS for different polishing pressures
    Fig. 8. Removal profile of ZnS for different polishing pressures
    Effect of pressure on M-ZnS material removal
    Fig. 9. Effect of pressure on M-ZnS material removal
    Removal profile for different speed ratios
    Fig. 10. Removal profile for different speed ratios
    M-ZnS material removal rate for different speed ratios
    Fig. 11. M-ZnS material removal rate for different speed ratios
    M-ZnS flat optic
    Fig. 12. M-ZnS flat optic
    Polishing simulation results
    Fig. 13. Polishing simulation results
    Comparison between before and after robotic polishing of M-Zn flat optic
    Fig. 14. Comparison between before and after robotic polishing of M-Zn flat optic

    Mechanical

    parameters

    45# steelM-ZnSPitch
    Density/(kg·m-37 7504 0901 050
    Young modulus/Pa1.93×10118.55×10104.80×109
    Poisson's ratio0.310.280.35
    Table 1. Mechanical parameters of simulated materials
    Pressure/NR22R42R62
    20.981 10.998 70.999 8
    50.982 10.999 10.999 8
    100.974 10.999 00.999 8
    150.972 30.999 20.999 8
    Table 2. Determination coefficients for different orders of fitted curves
    Speed ratio/(r·min-1Eccentricity radius/mmPolishing pressure/MPaSlurryTemperature/°C
    200/-5020.1Al2O320
    200/-5020.12Al2O320
    200/-5020.14Al2O320
    200/-5020.16Al2O320
    200/-5020.18Al2O320
    200/-5020.20Al2O320
    Table 3. Experimental parameters of pressure test
    Speed ratio/(r·min-1Eccentricity radius/mmPolishing pressure/MPaSlurryTemperature/°C
    200/020.12Al2O320
    200/-1020.12Al2O320
    200/-5020.12Al2O320
    200/-10020.12Al2O320
    200/-15020.12Al2O320
    200/-20020.12Al2O320
    Table 4. Experimental parameters of speed ratio test
    Yikai ZANG, Beibei ZHU, Lin QIN, Yao SHANG, Junhao SHANG, Zhongdi SHE, Xiao CHEN, Junfeng XIAO, Jianfeng XU. Modeling of removal function and optimization of process parameters for robotic polishing M-ZnS[J]. Optics and Precision Engineering, 2024, 32(15): 2387
    Download Citation