• Laser & Optoelectronics Progress
  • Vol. 62, Issue 2, 0237001 (2025)
Xinggui Xu1、*, Hong Li1, Bing Ran2, Weihe Ren3, and Junrong Song1
Author Affiliations
  • 1The School of Information, Yunnan University of Finance and Economics, Kunming 650051, Yunnan , China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610054, Sichuan , China
  • 3The Institute of Beijing Space Electromechanical Research, Beijing 100039, China
  • show less
    DOI: 10.3788/LOP240707 Cite this Article Set citation alerts
    Xinggui Xu, Hong Li, Bing Ran, Weihe Ren, Junrong Song. Turbulence-Blurred Target Restoration Algorithm with a Nonconvex Regularization Constraint[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0237001 Copy Citation Text show less

    Abstract

    A turbulent fuzzy target restoration algorithm with a nonconvex regularization constraint is proposed to address degradation issues, such as low signal-to-noise ratio, blurring, and geometric distortion, in target images caused by atmospheric turbulence and light scattering in long-range optoelectronic detection systems. First, we utilized latent low-rank spatial decomposition (LatLRSD) to obtain the target low-rank components, texture components, and high-frequency noise components. Next, two structural components were obtained by denoising the LatLRSD model; these were weighted and reconstructed in the wavelet transform domain, and nonconvex regularization constraints were added to the constructed target reconstruction function to improve the reconstruction blur and scale sensitivity problems caused by the traditional lp norm (p=0,1,2) as a constraint term. The results of a target restoration experiment in long-distance turbulent imaging scenes show that compared with traditional algorithms, the proposed algorithm can effectively remove turbulent target blur and noise; the average signal-to-noise ratio of the restored target is improved by about 9 dB. Further, the proposed algorithm is suitable for multiframe or single-frame turbulent blur target restoration scenes.
    minΖZ*   s.t.  XO=AZ
    XO=[XO  XH]ZO,H*=XOZO|H*+XHZH|O*=XOZO|H*+XHVHVOH=XOZO|H*+UVHTVOH=XOZO|H*+UVHTVH-1UTXO
    XO=XOZO|H*+LH|O*XO
    minZO|H,LH|Orank(ZO|H)+rank(LH|O)   s.t. XO=XOZO|H+LH|OXO
    minZ,LZ*+L*  s.t. X=XZ+LX
    minZ,LZ*+L*+ηE1  s.t. X=XZ+LX+E
    J*+S*+ηE1+trY1T(X-XZ-LX-E)+trY2T(Z-J)+trY3T(L-S)+μ2(X-XZ-LX-EF2+Z-JF2+F-SF2)
    J=argminJ1μJ*+12(J-(Z+Y2/μ)F2S=argminS1μS*+12(S-(L+Y3/μ)F2Z=(I+XTX)-1XT(X-LX-E)+J+         (XTY1-Y2)/μL=XT(X-XZ-E)+S+(XTY1-Y3)/μ         (I+XTX)-1E=argminEλμE1+         12E-(X-XZ-LX+Y1)/μF2
    Z=J=L=S=E=0;Yi=0,i=1,2,3(1)
    J(x)=12y-Ax22+λxp
    F(x)=12y-Ax22+λϕB(x)
    ϕ(x):=x-12x2,|x|<112,|x|1
    s(x)=12b2x2,|x|<1b2x-12b2,|x|1b2
    sb(x)=minvR|v|+12b2(x-v)2
    f(x)=12(y-ax)2+λϕb(x)
    f(x)=12(y-ax)2+λ|x|-minvR|v|+12b2(x-v)2=12(a2-λb2)x2+λ|x|+maxvR12(y2-2axyx)-λ|v|-12λb(v2-2xv)
    a2-λb20λa2/b2
    sB(x)=minvRNv1+12B(x-v)222
    λATABTB
    yi=βiHix+ni
    F(x)=12y1-β1H1Wx22+12y2-β2H2Wx22+λϕB(x)
    BTB=γλ(WTH1Tβ12H1W+WTH2Tβ22H2W)
    (x˜,v˜)=argminxRNmaxvRNF(x,v)=12y1-β1H1Wx22+12y2-β2H2Wx22+λx1-λv1+λ2B(x-v)222
    (x˜,v˜)=argminxRNmaxvRNF(x,v)=12y1-β1H1Wx22+12y2-β2H2Wx22+λx1-λv1+γ2WTH1Tβ12H1W(x-v)22+WTH2Tβ22H2W(x-v)22
    x˜i=xi-μWTH1Tβ1(β1H1Wxi-L)+WTH2Tβ2(β2H2Wxi-S)+γWTH1Tβ12H1W(xi-vi)+WTH1Tβ12H1W(xi-vi)v˜i=vi-μγ(WTH1Tβ12H1W(xi-vi)+WTH1Tβ12H1W(xi-vi)xi+1=soft(x˜i,μλ)vi+1=soft(v˜i,μλ)(1)
    MEx=xpx×log1px
    SDσx2i,j=12n+12k=i-ni+nl=j-nj+nxk,l-mxi,j2mxi,j=12n+12k=i-ni+nl=j-nj+nxk,l
    EIi,j=Δx fi,j2+Δy fi,j2
    ICI=1mnk=1,l=1m,nImax,k,l-Imin,k,lImax,k,l+Imin,k,llogImax,k,l-Imin,k,lImax,k,l+Imin,k,l
    Xinggui Xu, Hong Li, Bing Ran, Weihe Ren, Junrong Song. Turbulence-Blurred Target Restoration Algorithm with a Nonconvex Regularization Constraint[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0237001
    Download Citation