[1] Arasumani M, Bunyan M, Robin V V. Opportunities and challenges in using remote sensing for invasive tree species management, and in the identification of restoration sites in tropical montane grasslands[J]. Journal of Environmental Management, 280, 111759(2021).
[2] Stoffels J, Hill J, Sachtleber T et al. Satellite-based derivation of high-resolution forest information layers for operational forest management[J]. Forests, 6, 1982-2013(2015).
[3] Sun Y, Huang J F, Ao Z R et al. Deep learning approaches for the mapping of tree species diversity in a tropical wetland using airborne LiDAR and high-spatial-resolution remote sensing images[J]. Forests, 10, 1047(2019).
[4] Wang R, Gamon J A. Remote sensing of terrestrial plant biodiversity[J]. Remote Sensing of Environment, 231, 111218(2019).
[5] Kirby K R, Potvin C. Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project[J]. Forest Ecology and Management, 246, 208-221(2007).
[6] Fassnacht F E, Latifi H, Stereńczak K et al. Review of studies on tree species classification from remotely sensed data[J]. Remote Sensing of Environment, 186, 64-87(2016).
[7] Pu R L. Mapping tree species using advanced remote sensing technologies: a state-of-the-art review and perspective[J]. Journal of Remote Sensing, 2021, 9812624(2021).
[8] Ørka H O, Jutras-Perreault M C, Næsset E et al. A framework for a forest ecological base map-an example from Norway[J]. Ecological Indicators, 136, 108636(2022).
[9] Axelsson A, Lindberg E, Reese H et al. Tree species classification using Sentinel-2 imagery and Bayesian inference[J]. International Journal of Applied Earth Observation and Geoinformation, 100, 102318(2021).
[10] Michałowska M, Rapiński J. A review of tree species classification based on airborne LiDAR data and applied classifiers[J]. Remote Sensing, 13, 353(2021).
[11] Pu C Y, Huang H, Yang L P. An attention-driven convolutional neural network-based multi-level spectral-spatial feature learning for hyperspectral image classification[J]. Expert Systems with Applications, 185, 115663(2021).
[12] Grabska E, Frantz D, Ostapowicz K. Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians[J]. Remote Sensing of Environment, 251, 112103(2020).
[13] Alonso L, Picos J, Armesto J. Forest land cover mapping at a regional scale using multi-temporal Sentinel-2 imagery and RF models[J]. Remote Sensing, 13, 2237(2021).
[14] Asner G P, Martin R E. Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests[J]. Frontiers in Ecology and the Environment, 7, 269-276(2009).
[15] Asner G P, Martin R E, Anderson C B et al. Quantifying forest canopy traits: imaging spectroscopy versus field survey[J]. Remote Sensing of Environment, 158, 15-27(2015).
[16] Welle T, Aschenbrenner L, Kuonath K et al. Mapping dominant tree species of German forests[J]. Remote Sensing, 14, 3330(2022).
[17] Dalponte M, Bruzzone L, Gianelle D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data[J]. Remote Sensing of Environment, 123, 258-270(2012).
[18] Fagan M E, DeFries R E, Sesnie S E et al. Mapping species composition of forests and tree plantations in northeastern costa rica with an integration of hyperspectral and multitemporal landsat imagery[J]. Remote Sensing, 7, 5660-5696(2015).
[19] Clark M L, Roberts D A. Species-level differences in hyperspectral metrics among tropical rainforest trees as determined by a tree-based classifier[J]. Remote Sensing, 4, 1820-1855(2012).
[20] Huang Z H, Zhong L H, Zhao F et al. A spectral-temporal constrained deep learning method for tree species mapping of plantation forests using time series Sentinel-2 imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 204, 397-420(2023).
[21] Wang Y T, Wang J, Chang S P et al. Classification of street tree species using UAV tilt photogrammetry[J]. Remote Sensing, 13, 216(2021).
[22] Choudhury M A M, Marcheggiani E, Galli A et al. Mapping the urban atmospheric carbon stock by LiDAR and WorldView-3 data[J]. Forests, 12, 692(2021).
[23] Wang K P, Wang T J, Liu X H. A review: individual tree species classification using integrated airborne LiDAR and optical imagery with a focus on the urban environment[J]. Forests, 10, 1(2018).
[24] Pu R L, Landry S. Mapping urban tree species by integrating multi-seasonal high resolution pléiades satellite imagery with airborne LiDAR data[J]. Urban Forestry & Urban Greening, 53, 126675(2020).
[25] Schiefer F, Kattenborn T, Frick A et al. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 205-215(2020).
[26] de Araújo Carvalho M, Marcato J, Martins J A C et al. A deep learning-based mobile application for tree species mapping in RGB images[J]. International Journal of Applied Earth Observation and Geoinformation, 114, 103045(2022).
[27] Wang B, Liu J Y, Li J N et al. UAV LiDAR and hyperspectral data synergy for tree species classification in the Maoershan forest farm region[J]. Remote Sensing, 15, 1000(2023).
[28] Hartling S, Sagan V, Sidike P et al. Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning[J]. Sensors, 19, 1284(2019).
[29] Zhao Y J, Zeng Y, Zheng Z J et al. Forest species diversity mapping using airborne LiDAR and hyperspectral data in a subtropical forest in China[J]. Remote Sensing of Environment, 213, 104-114(2018).
[30] Xu W B, Cheng X J. Impact of plant surface features on 3D laser point cloud[J]. Laser & Optoelectronics Progress, 57, 242802(2020).
[31] Ni H Y, Li L, Yao W et al. Tree species classification combined with hyperspectral and airborne LiDAR[J]. Laser & Infrared, 53, 313-320(2023).
[32] Yan M, Xia Y H, Wang C et al. Study on classification of single-wood scale tree species in forest based on cross-modal fusion of UAV point cloud and image[J]. Remote Sensing Technology and Application, 39, 87-97(2024).
[33] Xiao T C, Chen Y H, Li Y K et al. Research on crop disease recognition model based on improved channel attention mechanism[J]. Jiangsu Agricultural Sciences, 51, 168-175(2023).
[34] Zhao P, Zhou Y X. A DA-YOLO defect detection algorithm based on attention mechanism[J]. Journal of China Jiliang University, 35, 326-332, 348(2024).
[35] Pang C, Wang C A, Su Y et al. Rice disease detection method based on improved YOLOv8n[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 45, 62-68(2024).
[36] Yu Y J, Wang Y, Li H et al. Channel-wise attention mechanism relevant UNet-based diffraction-limited fluorescence spot detection and localization[J]. Laser & Optoelectronics Progress, 60, 1412004(2023).
[37] Li K G, Wang H Y, Liu X et al. End-to-end phase reconstruction of digital holography based on improved residual unet[J]. Laser & Optoelectronics Progress, 60, 0610016(2023).
[38] Verma N K, Lamb D W, Sinha P. Airborne LiDAR and high resolution multispectral data integration in Eucalyptus tree species mapping in an Australian farmscape[J]. Geocarto International, 37, 70-90(2022).
[39] Green A A, Berman M, Switzer P et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 26, 65-74(1988).
[40] Chen Q, Baldocchi D, Gong P et al. Isolating individual trees in a savanna woodland using small footprint lidar data[J]. Photogrammetric Engineering & Remote Sensing, 72, 923-932(2006).
[41] Lu X C, Guo Q H, Li W K et al. A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 94, 1-12(2014).
[42] Yuan Q, Ang Y, Shafri H Z M. Hyperspectral image classification using residual 2d and 3d convolutional neural network joint attention model[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 44, 187-193(2021).