[1] Yang, Y., Wang, Z.J., Zhang, X.B., Zhang, Q., Wang, T.: Recent progress of in-fiber WGM microsphere resonator. Front Optoelectron. 16(1), 10 (2023)
[2] Ouyang, X., Liu, T., Zhang, Y., He, J., He, Z., Zhang, A.P., Tam, H.Y.: Ultrasensitive optofluidic enzyme-linked immunosorbent assay by on-chip integrated polymer whispering-gallery-mode microlaser sensors. Lab Chip 20(14), 2438–2446 (2020)
[3] Gao, X., Li, J., Hao, Z., Bo, F., Hu, C., Wang, J., Liu, Z., Li, Z.Y., Zhang, G., Xu, J.: Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate. J. Appl. Phys. 121(6), 064502 (2017)
[4] Wu, Y., Duan, B., Li, C., Yang, D.: Multimode sensing based on optical microcavities. Front Optoelectron. 16(1), 29 (2023)
[5] Vanier, F., Cote, F., Amraoui, M.E., Messaddeq, Y., Peter, Y.A., Rochette, M.: Low-threshold lasing at 1975 nm in thulium-doped tellurite glass microspheres. Opt. Lett. 40(22), 5227–5230 (2015)
[6] Lee, Y.H., Park, H., Kim, I., Park, S.J., Rim, S., Park, B.J., Kim, M., Kim, Y., Kim, M.K., Han, W.S., Kim, H., Park, H., Choi, M.: Shape-tailored whispering gallery microcavity lasers designed by transformation optics. Photon. Res. 11(9), A35–A43 (2023)
[7] Jiang, F., Shao, L., Zhang, X., Yi, X., Wiersig, J., Wang, L., Gong, Q., Lonar, M., Yang, L., Xiao, Y.F.: Chaos-assisted broadband momentum transformation in optical microresonators. Science 358(6361), 344–347 (2017)
[8] Olivares, S.: Quantum optics in the phase space. Eur. Phys. J. Spec. Top. 203(1), 3–24 (2012)
[9] Lin, G., Chembo, Y.K.: On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. Opt. Express 23(2), 1594–1604 (2015)
[10] Ma, C.G., Xiao, J.L., Xiao, X., Yang, Y.D., Huang, Y.Z.: Chaotic microlasers caused by internal mode interaction for random number generation. Light Sci. Appl. 11(1), 187 (2022)
[11] Liu, P.F., Wen, H., Ren, L.H., Shi, L., Zhang, X.: (2) nonlinear photonics in integrated microresonators. Front Optoelectron. 16(1), 18 (2023)
[12] Wiersig, J.: Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84(6), 063828 (2011)
[13] Gwak, S., Kim, H., Yu, H.H., Ryu, J., Kim, C.M., Yi, C.H.: Rayleigh scatterer-induced steady exceptional points of stable-island modes in a deformed optical microdisk. Opt. Lett. 46(12), 2980–2983 (2021)
[14] Wiersig, J., Kim, W., Hentschel, M.: Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A 78(5), 053809 (2008)
[15] Wang, Z.J., Zhang, X.B., Zhang, Q., Chen, Y., Wang, Y., Yu, Y., Yang, Y., Wang, T.: Dominated mode switching and nanoparticle detection at exceptional points. J. Opt. Soc. Am. B 40(1), 108–114 (2022)
[16] Schawlow, L., Townes, H.: Parity-time-symmetric microring lasers. Science 10, 588–694 (2014)
[17] Wang, W., Liu, S., Gu, Z., Wang, Y.: Chirality-enabled unidirectional light emission and nanoparticle detection in parity-time-symmetric microcavity. Phys. Rev. A (Coll. Park) 101(1), 013833 (2020)
[18] Kwak, H., Shin, Y., Moon, S., Lee, S.B., Yang, J., An, K.: Nonlinear resonance-assisted tunneling induced by microcavity deformation. Sci. Rep. 5(1), 9010 (2015)
[19] Fritzsch, F., Ketzmerick, R., Backer, A.: Resonance-assisted tunneling in deformed optical microdisks with a mixed phase space. Phys. Rev. E 100(4), 042219 (2019)
[20] Chen, W., Kaya zdemir, ., Zhao, G., Wiersig, J., Yang, L.: Exceptional points enhance sensing in an optical microcavity. Nature 548(7666), 192–196 (2017)
[21] Shen, Z.Z., Tang, M., Chen, L.Y., Huang, Y.Z.: Unidirectional emission and nanoparticle detection in a deformed circular square resonator. Opt. Express 29(2), 1666–1677 (2021)
[22] Zhang, N., Gu, Z.Y., Liu, S., Wang, Y., Wang, S., Duan, Z., Sun, W., Xiao, Y.F., Xiao, S., Song, Q.: Far-field single nanoparticle detection and sizing. Optica 4(9), 1151–1156 (2017)
[23] Wiersig, J.: Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counterpropagating traveling waves. Phys. Rev. A 89(1), 012119 (2014)
[24] Peter, J., Kailasnath, M., Anand, V.R., Vallabhan, C.P.G., Mujeeb, A.: Control of directional emission of resonance modes in an asymmetric cylindrical microcavity. Opt. Laser Technol. 105, 1–3 (2018)
[25] Alkhazragi, O., Dong, M., Chen, L., Liang, D., Ng, T.K., Zhang, J., Bagci, H., Ooi, B.S.: Modifying the coherence of vertical-cavity surface-emitting lasers using chaotic cavities. Optica 10(2), 191–199 (2023)
[26] Wiersig, J., Hentschel, M.: Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett. 100(3), 033901 (2008)
[27] Kim, M., Kwon, K., Shim, J., Jung, Y., Yu, K.: Partially directional microdisk laser with two Rayleigh scatterers. Opt. Lett. 39(8), 2423–2426 (2014)
[28] Yu, H., Yi, H., Kim, M.: Mechanism of Q-spoiling in deformed optical microcavities. Opt. Express 23(9), 11054–11062 (2015)
[29] Wang, W., Chen, Y.L., Shen, Z., Yang, K., Sheng, M.W., Hao, Y.Z., Yang, Y., Xiao, J.L., Huang, Y.Z.: Unidirectional light emission in a deformed circular-side triangular microresonator. Opt. Express 31(9), 14560–14569 (2023)
[30] Gao, A., Yang, C., Chen, L., Zhang, R., Luo, Q., Wang, W., Cao, Q., Hao, Z., Bo, F., Zhang, G., Xu, J.: Directional emission in X-cut lithium niobate microresonators without chaos dynamics. Photon. Res. 10(2), 401–406 (2022)
[31] Liu, S., Wiersig, J., Sun, Z., Fan, Y., Ge, L., Yang, J., Xiao, S., Song, Q., Cao, H.: Transporting the optical chirality through the dynamical barriers in optical microcavities. Laser Photonics Rev. 12(10), 1800027 (2018)
[32] Wen, H., Ren, L.H., Shi, L., Zhang, X.: Parity-time symmetry in monolithically integrated graphene-assisted microresonators. Opt. Express 30(2), 2112–2121 (2022)
[33] Peng, B., Ozdemir, S.K., Liertzer, M., Chen, W., Kramer, J., Ylmaz, H., Wiersig, J., Rotter, S., Yang, L.: Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. U.S.A. 113(25), 6845–6850 (2016)
[34] Kneissl, M., Teepe, M., Miyashita, N., Johnson, N., Chern, G., Chang, R.: Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission. APL Photonics 84(14), 2485–2487 (2004)
[35] Ge, L., Sarma, R., Cao, H.: Rotation-induced evolution of far-field emission patterns of deformed microdisk cavities. Optica 2(4), 323–328 (2015)
[36] Yang, J., Saab, W., Liu, Y., Ben-Tzvi, P.: Reuleaux triangle-based two degrees of freedom bipedal robot. Robotics 10(4), 15 (2021)
[37] Gwak, S., Ryu, J., Kim, H., Yu, H.H., Kim, C.M., Yi, C.H.: Farfield correlations verifying non-Hermitian degeneracy of optical modes. Phys. Rev. Lett. 129(7), 6 (2022)
[38] Cheng, H., Dong, M., Tan, Q., Meng, L., Cai, Y., Jiang, J., Yang, W., Zhong, H., Wang, L.: Broadband mid-IR antireflective Reuleaux-triangle-shaped hole array on germanium. Chin. Opt. Lett. 17(12), 4 (2019)
[39] Frateschi, N.C., Levi, A.F.J.: The spectrum of microdisk lasers. J. Appl. Phys. 80(2), 644–653 (1996)
[40] Hentschel, M., Schomerus, H., Schubert, R.: Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond. Europhys. Lett. 62(5), 636–642 (2003)