• Infrared and Laser Engineering
  • Vol. 53, Issue 9, 20240362 (2024)
Yikang HE1, Pengcheng WANG1, Shuanglong BIAN1, Fangning LI1, Pengyu JIANG1, Xianye LI2、*, and Baoqing SUN1
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao 266237, China
  • 2School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
  • show less
    DOI: 10.3788/IRLA20240362 Cite this Article
    Yikang HE, Pengcheng WANG, Shuanglong BIAN, Fangning LI, Pengyu JIANG, Xianye LI, Baoqing SUN. Recent advances in diffraction imaging with low temporal coherent illumination (invited)[J]. Infrared and Laser Engineering, 2024, 53(9): 20240362 Copy Citation Text show less
    References

    [1] J MIAO, R L SANDBERG, C SONG. Coherent X-ray diffraction imaging. IEEE Journal of Selected Topics in Quantum Electronics, 18, 399-410(2012).

    [2] P THIBAULT, M GUIZAR-SICAIROS, A MENZEL. Coherent imaging at the diffraction limit. Journal of Synchrotron Radiation, 21, 1011-1018(2014).

    [3] Haibo ZHAO, Yanli LIU, Wenshuo YANG. Double channels diffractive computational imaging spectrometer system. Infrared and Laser Engineering, 51, 20220077-20220078(2022).

    [4] Fucai ZHANG, Wenhui XU, Zhenfei HE. Progress in coherent diffraction imaging: ptychography and coherent modulation imaging. Infrared and Laser Engineering, 48, 0603011(2019).

    [5] W CHAO, B D HARTENECK, J A LIDDLE et al. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 435, 1210-1213(2005).

    [6] G SCHMAHL, D RUDOLPH, B NIEMANN et al. Zone-plate X-ray microscopy. Quarterly Reviews of Biophysics, 13, 297-315(1980).

    [7] H MIMURA, S HANDA, T KIMURA et al. Breaking the 10 nm barrier in hard-X-ray focusing. Nature Physics, 6, 122-125(2010).

    [8] S REHBEIN, S HEIM, P GUTTMANN et al. Ultrahigh-resolution soft-X-ray microscopy with zone plates in high orders of diffraction. Physical Review Letters, 103, 110801(2009).

    [9] R A LEWIS. Medical phase contrast x-ray imaging: current status and future prospects. Physics in Medicine & Biology, 49, 3573(2004).

    [10] D A SHAPIRO, Y S YU, T TYLISZCZAK et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nature Photonics, 8, 765-769(2014).

    [11] J NELSON, X HUANG, J STEINBRENER et al. High-resolution X-ray diffraction microscopy of specifically labeled yeast cells. Proceedings of the National Academy of Sciences, 107, 7235-7239(2010).

    [12] M D SEABERG, B ZHANG, D F GARDNER et al. Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography. Optica, 1, 39-44(2014).

    [13] M HOLLER, M GUIZAR-SICAIROS, E H R TSAI et al. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature, 543, 402-406(2017).

    [14] I ROBINSON, R HARDER. Coherent X-ray diffraction imaging of strain at the nanoscale. Nature Materials, 8, 291-298(2009).

    [15] D SAYRE. Some implications of a theorem due to shannon. Acta Crystallographica, 5, 843-843(1952).

    [16] J MIAO, P CHARALAMBOUS, J KIRZ et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400, 342-344(1999).

    [17] F E LYTLE. An introduction to diffraction. Part II: The far field. Applied Spectroscopy, 53, 262-276(1999).

    [18] L BASANO, P OTTONELLO, G ROTTIGNI et al. Spatial and temporal coherence of filtered thermal light. Applied Optics, 42, 6239-6244(2003).

    [19] L MANDEL, E WOLF. Coherence properties of optical fields. Reviews of Modern Physics, 37, 231-287(1965).

    [20] K MøLMER. Optical coherence: A convenient fiction. Physical Review A, 55, 3195-3203(1997).

    [21] J C H SPENCE, U WEIERSTALL, M HOWELLS. Coherence and sampling requirements for diffractive imaging. Ultramicroscopy, 101, 149-152(2004).

    [22] B CHEN, B ABBEY, R DILANIAN et al. Diffraction imaging: The limits of partial coherence. Physical Review B, 86, 235401(2012).

    [23] M DIEROLF, A MENZEL, P THIBAULT et al. Ptychographic X-ray computed tomography at the nanoscale. Nature, 467, 436-439(2010).

    [24] E MALM, E FOHTUNG, A MIKKELSEN. Multi-wavelength phase retrieval for coherent diffractive imaging. Optics Letters, 46, 13-16(2021).

    [25] D J BATEY, D CLAUS, J M RODENBURG. Information multiplexing in ptychography. Ultramicroscopy, 138, 13-21(2014).

    [26] ATTAL B, O’TOOLE M. Towards mixedstate coded diffraction imaging[J]. IEEE Transactions on Pattern Analysis Machine Intelligence , 2022, 99: 112.

    [27] M HENTSCHEL, R KIENBERGER, C SPIELMANN et al. Attosecond metrology. Nature, 414, 509-513(2001).

    [28] M SCHULTZE, A WIRTH, I GRGURAS et al. State-of-the-art attosecond metrology. Journal of Electron Spectroscopy and Related Phenomena, 184, 68-77(2011).

    [29] F KRAUSZ, M I STOCKMAN. Attosecond metrology: From electron capture to future signal processing. Nature Photonics, 8, 205-213(2014).

    [30] D H KOBE, V C AGUILERA-NAVARRO. Derivation of the energy-time uncertainty relation. Physical Review A, 50, 933-938(1994).

    [31] O KULLIE. Tunneling time in attosecond experiments and the time-energy uncertainty relation. Physical Review A, 92, 052118(2015).

    [32] Y GARINI, I T YOUNG, G MCNAMARA. Spectral imaging: Principles and applications. Cytometry Part A, 69A, 735-747(2006).

    [33] H G TOMPKINS, S TASIC, J BAKER et al. Spectroscopic ellipsometry measurements of thin metal films. Surface and Interface Analysis, 29, 179-187(2000).

    [34] P A PROSEKOV, V L NOSIK, A E BLAGOV. Methods of coherent X-ray diffraction imaging. Crystallography Reports, 66, 867-882(2021).

    [35] G J WILLIAMS, H M QUINEY, B B DHAL et al. Fresnel coherent diffractive imaging. Physical Review Letters, 97, 025506(2006).

    [36] B ABBEY, K A NUGENT, G J WILLIAMS et al. Keyhole coherent diffractive imaging. Nature Physics, 4, 394-398(2008).

    [37] F PFEIFFER. X-ray ptychography. Nature Photonics, 12, 9-17(2018).

    [38] Y JIANG, Z CHEN, Y HAN et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature, 559, 343-349(2018).

    [39] G ZHENG, C SHEN, S JIANG et al. Concept, implementations and applications of Fourier ptychography. Nature Reviews Physics, 3, 207-223(2021).

    [40] G ZHENG, R HORSTMEYER, C YANG. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics, 7, 739-745(2013).

    [41] F ZHANG, B CHEN, G R MORRISON et al. Phase retrieval by coherent modulation imaging. Nature Communications, 7, 13367(2016).

    [42] J MIAO, T ISHIKAWA, I K ROBINSON et al. Beyond crystallography: Diffractive imaging using coherent X-ray light sources. Science, 348, 530-535(2015).

    [43] T SUN, Z JIANG, J STRZALKA et al. Three-dimensional coherent X-ray surface scattering imaging near total external reflection. Nature Photonics, 6, 586-590(2012).

    [44] I K ROBINSON, I A VARTANYANTS, G J WILLIAMS et al. Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction. Physical Review Letters, 87, 195505(2001).

    [45] H öZTÜRK, X HUANG, H YAN et al. Performance evaluation of Bragg coherent diffraction imaging. New Journal of Physics, 19, 103001(2017).

    [46] J R FIENUP. Phase retrieval algorithms: a comparison. Applied Optics, 21, 2758-2769(1982).

    [47] J R FIENUP. Reconstruction of an object from the modulus of its Fourier transform. Optics Letters, 3, 27-29(1978).

    [48] D R LUKE. Relaxed averaged alternating reflections for diffraction imaging. Inverse Problems, 21, 37(2004).

    [49] G Z YANG, B Z DONG, B Y GU et al. Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: A comparison. Applied Optics, 33, 209-218(1994).

    [50] H M L FAULKNER, J M RODENBURG. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm. Physical Review Letters, 93, 023903(2004).

    [51] A M MAIDEN, J M RODENBURG. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy, 109, 1256-1262(2009).

    [52] ZHANG Z, MAIDEN A M. A comparison of ptychographic phase retrieval algithms[C]Quantitative Phase Imaging V, SPIE, 2019, 10887: 7986.

    [53] DWIVEDI P, KONIJNENBERG A P, PEREIRA S F, et al. New method f probe position crection f Ptychography[C]Optical Measurement Systems f Industrial Inspection X, SPIE, 2017, 10392: 725730.

    [54] S KANDEL, S MADDALI, Y S G NASHED et al. Efficient ptychographic phase retrieval via a matrix-free Levenberg-Marquardt algorithm. Optics Express, 29, 23019-23055(2021).

    [55] R LI, G PEDRINI, Z HUANG et al. Physics-enhanced neural network for phase retrieval from two diffraction patterns. Optics Express, 30, 32680-32692(2022).

    [56] WANG F, BIAN Y, WANG H, et al. Phase imaging with an untrained neural wk[J]. Light : Science & Applications , 2020, 9(1): 77.

    [57] Y RIVENSON, Y ZHANG, H GÜNAYDIN et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light: Science & Applications, 7, 17141-17141(2018).

    [58] E WOLF. New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources. JOSA, 72, 343-351(1982).

    [59] C LYNGå, M B GAARDE, C DELFIN et al. Temporal coherence of high-order harmonics. Physical Review A, 60, 4823-4830(1999).

    [60] L JI, X ZHAO, D LIU et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse. Optics Letters, 44, 4359-4362(2019).

    [61] B CHEN, R A DILANIAN, S TEICHMANN et al. Multiple wavelength diffractive imaging. Physical Review A, 79, 023809(2009).

    [62] E MALM, H WIKMARK, B PFAU et al. Singleshot polychromatic coherent diffractive imaging with a high-order harmonic source. Optics Express, 28, 394-404(2020).

    [63] B ABBEY, L W WHITEHEAD, H M QUINEY et al. Lensless imaging using broadband X-ray sources. Nature Photonics, 5, 420-424(2011).

    [64] J HUIJTS, S FERNANDEZ, D GAUTHIER et al. Broadband coherent diffractive imaging. Nature Photonics, 14, 618-622(2020).

    [65] Y YAO, Y JIANG, J KLUG et al. Broadband X-ray ptychography using multi-wavelength algorithm. Journal of Synchrotron Radiation, 28, 309-317(2021).

    [66] C CHEN, H GU, S LIU. Ultra-broadband diffractive imaging with unknown probe spectrum. Light: Science & Applications, 13, 213(2024).

    [67] C CHEN, H GU, S LIU. Ultra-simplified diffraction-based computational spectrometer. Light: Science & Applications, 13, 9(2024).

    [68] X DONG, X PAN, C LIU et al. Single shot multi-wavelength phase retrieval with coherent modulation imaging. Optics Letters, 43, 1762-1765(2018).

    [69] P THIBAULT, A MENZEL. Reconstructing state mixtures from diffraction measurements. Nature, 494, 68-71(2013).

    [70] A RANA, J ZHANG, M PHAM et al. Potential of attosecond coherent diffractive imaging. Physical Review Letters, 125, 086101(2020).

    [71] A S JOHNSON, J V CONESA, L VIDAS et al. Quantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxide. Science Advances, 7, 1386(2021).

    [72] Y SHAO, S WEERDENBURG, J SEIFERT et al. Wavelength-multiplexed multi-mode EUV reflection ptychography based on automatic differentiation. Light: Science & Applications, 13, 196(2024).

    Yikang HE, Pengcheng WANG, Shuanglong BIAN, Fangning LI, Pengyu JIANG, Xianye LI, Baoqing SUN. Recent advances in diffraction imaging with low temporal coherent illumination (invited)[J]. Infrared and Laser Engineering, 2024, 53(9): 20240362
    Download Citation