[1] MIAO J, SANDBERG R L, SONG C. Coherent X-ray diffraction imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 399-410(2012).
[2] THIBAULT P, GUIZAR-SICAIROS M, MENZEL A. Coherent imaging at the diffraction limit[J]. Journal of Synchrotron Radiation, 21, 1011-1018(2014).
[3] ZHAO Haibo, LIU Yanli, YANG Wenshuo. Double channels diffractive computational imaging spectrometer system[J]. Infrared and Laser Engineering, 51, 20220077-20220078(2022).
[4] ZHANG Fucai, XU Wenhui, HE Zhenfei. Progress in coherent diffraction imaging: ptychography and coherent modulation imaging[J]. Infrared and Laser Engineering, 48, 0603011(2019).
[5] CHAO W, HARTENECK B D, LIDDLE J A et al. Soft X-ray microscopy at a spatial resolution better than 15 nm[J]. Nature, 435, 1210-1213(2005).
[6] SCHMAHL G, RUDOLPH D, NIEMANN B et al. Zone-plate X-ray microscopy[J]. Quarterly Reviews of Biophysics, 13, 297-315(1980).
[7] MIMURA H, HANDA S, KIMURA T et al. Breaking the 10 nm barrier in hard-X-ray focusing[J]. Nature Physics, 6, 122-125(2010).
[8] REHBEIN S, HEIM S, GUTTMANN P et al. Ultrahigh-resolution soft-X-ray microscopy with zone plates in high orders of diffraction[J]. Physical Review Letters, 103, 110801(2009).
[9] LEWIS R A. Medical phase contrast x-ray imaging: current status and future prospects[J]. Physics in Medicine & Biology, 49, 3573(2004).
[10] SHAPIRO D A, YU Y S, TYLISZCZAK T et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy[J]. Nature Photonics, 8, 765-769(2014).
[11] NELSON J, HUANG X, STEINBRENER J et al. High-resolution X-ray diffraction microscopy of specifically labeled yeast cells[J]. Proceedings of the National Academy of Sciences, 107, 7235-7239(2010).
[12] SEABERG M D, ZHANG B, GARDNER D F et al. Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography[J]. Optica, 1, 39-44(2014).
[13] HOLLER M, GUIZAR-SICAIROS M, TSAI E H R et al. High-resolution non-destructive three-dimensional imaging of integrated circuits[J]. Nature, 543, 402-406(2017).
[14] ROBINSON I, HARDER R. Coherent X-ray diffraction imaging of strain at the nanoscale[J]. Nature Materials, 8, 291-298(2009).
[15] SAYRE D. Some implications of a theorem due to shannon[J]. Acta Crystallographica, 5, 843-843(1952).
[16] MIAO J, CHARALAMBOUS P, KIRZ J et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 400, 342-344(1999).
[17] LYTLE F E. An introduction to diffraction. Part II: The far field[J]. Applied Spectroscopy, 53, 262-276(1999).
[18] BASANO L, OTTONELLO P, ROTTIGNI G et al. Spatial and temporal coherence of filtered thermal light[J]. Applied Optics, 42, 6239-6244(2003).
[19] MANDEL L, WOLF E. Coherence properties of optical fields[J]. Reviews of Modern Physics, 37, 231-287(1965).
[20] MøLMER K. Optical coherence: A convenient fiction[J]. Physical Review A, 55, 3195-3203(1997).
[21] SPENCE J C H, WEIERSTALL U, HOWELLS M. Coherence and sampling requirements for diffractive imaging[J]. Ultramicroscopy, 101, 149-152(2004).
[22] CHEN B, ABBEY B, DILANIAN R et al. Diffraction imaging: The limits of partial coherence[J]. Physical Review B, 86, 235401(2012).
[23] DIEROLF M, MENZEL A, THIBAULT P et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 467, 436-439(2010).
[24] MALM E, FOHTUNG E, MIKKELSEN A. Multi-wavelength phase retrieval for coherent diffractive imaging[J]. Optics Letters, 46, 13-16(2021).
[25] BATEY D J, CLAUS D, RODENBURG J M. Information multiplexing in ptychography[J]. Ultramicroscopy, 138, 13-21(2014).
[26] ATTAL B, O’TOOLE M. Towards mixedstate coded diffraction imaging[J]. IEEE Transactions on Pattern Analysis Machine Intelligence , 2022, 99: 112.
[27] HENTSCHEL M, KIENBERGER R, SPIELMANN C et al. Attosecond metrology[J]. Nature, 414, 509-513(2001).
[28] SCHULTZE M, WIRTH A, GRGURAS I et al. State-of-the-art attosecond metrology[J]. Journal of Electron Spectroscopy and Related Phenomena, 184, 68-77(2011).
[29] KRAUSZ F, STOCKMAN M I. Attosecond metrology: From electron capture to future signal processing[J]. Nature Photonics, 8, 205-213(2014).
[30] KOBE D H, AGUILERA-NAVARRO V C. Derivation of the energy-time uncertainty relation[J]. Physical Review A, 50, 933-938(1994).
[31] KULLIE O. Tunneling time in attosecond experiments and the time-energy uncertainty relation[J]. Physical Review A, 92, 052118(2015).
[32] GARINI Y, YOUNG I T, MCNAMARA G. Spectral imaging: Principles and applications[J]. Cytometry Part A, 69A, 735-747(2006).
[33] TOMPKINS H G, TASIC S, BAKER J et al. Spectroscopic ellipsometry measurements of thin metal films[J]. Surface and Interface Analysis, 29, 179-187(2000).
[34] PROSEKOV P A, NOSIK V L, BLAGOV A E. Methods of coherent X-ray diffraction imaging[J]. Crystallography Reports, 66, 867-882(2021).
[35] WILLIAMS G J, QUINEY H M, DHAL B B et al. Fresnel coherent diffractive imaging[J]. Physical Review Letters, 97, 025506(2006).
[36] ABBEY B, NUGENT K A, WILLIAMS G J et al. Keyhole coherent diffractive imaging[J]. Nature Physics, 4, 394-398(2008).
[37] PFEIFFER F. X-ray ptychography[J]. Nature Photonics, 12, 9-17(2018).
[38] JIANG Y, CHEN Z, HAN Y et al. Electron ptychography of 2D materials to deep sub-ångström resolution[J]. Nature, 559, 343-349(2018).
[39] ZHENG G, SHEN C, JIANG S et al. Concept, implementations and applications of Fourier ptychography[J]. Nature Reviews Physics, 3, 207-223(2021).
[40] ZHENG G, HORSTMEYER R, YANG C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).
[41] ZHANG F, CHEN B, MORRISON G R et al. Phase retrieval by coherent modulation imaging[J]. Nature Communications, 7, 13367(2016).
[42] MIAO J, ISHIKAWA T, ROBINSON I K et al. Beyond crystallography: Diffractive imaging using coherent X-ray light sources[J]. Science, 348, 530-535(2015).
[43] SUN T, JIANG Z, STRZALKA J et al. Three-dimensional coherent X-ray surface scattering imaging near total external reflection[J]. Nature Photonics, 6, 586-590(2012).
[44] ROBINSON I K, VARTANYANTS I A, WILLIAMS G J et al. Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction[J]. Physical Review Letters, 87, 195505(2001).
[45] öZTÜRK H, HUANG X, YAN H et al. Performance evaluation of Bragg coherent diffraction imaging[J]. New Journal of Physics, 19, 103001(2017).
[46] FIENUP J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).
[47] FIENUP J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 3, 27-29(1978).
[48] LUKE D R. Relaxed averaged alternating reflections for diffraction imaging[J]. Inverse Problems, 21, 37(2004).
[49] YANG G Z, DONG B Z, GU B Y et al. Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: A comparison[J]. Applied Optics, 33, 209-218(1994).
[50] FAULKNER H M L, RODENBURG J M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).
[51] MAIDEN A M, RODENBURG J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).
[52] ZHANG Z, MAIDEN A M. A comparison of ptychographic phase retrieval algithms[C]Quantitative Phase Imaging V, SPIE, 2019, 10887: 7986.
[53] DWIVEDI P, KONIJNENBERG A P, PEREIRA S F, et al. New method f probe position crection f Ptychography[C]Optical Measurement Systems f Industrial Inspection X, SPIE, 2017, 10392: 725730.
[54] KANDEL S, MADDALI S, NASHED Y S G et al. Efficient ptychographic phase retrieval via a matrix-free Levenberg-Marquardt algorithm[J]. Optics Express, 29, 23019-23055(2021).
[55] LI R, PEDRINI G, HUANG Z et al. Physics-enhanced neural network for phase retrieval from two diffraction patterns[J]. Optics Express, 30, 32680-32692(2022).
[56] WANG F, BIAN Y, WANG H, et al. Phase imaging with an untrained neural wk[J]. Light : Science & Applications , 2020, 9(1): 77.
[57] RIVENSON Y, ZHANG Y, GÜNAYDIN H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141-17141(2018).
[58] WOLF E. New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources[J]. JOSA, 72, 343-351(1982).
[59] LYNGå C, GAARDE M B, DELFIN C et al. Temporal coherence of high-order harmonics[J]. Physical Review A, 60, 4823-4830(1999).
[60] JI L, ZHAO X, LIU D et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse[J]. Optics Letters, 44, 4359-4362(2019).
[61] CHEN B, DILANIAN R A, TEICHMANN S et al. Multiple wavelength diffractive imaging[J]. Physical Review A, 79, 023809(2009).
[62] MALM E, WIKMARK H, PFAU B et al. Singleshot polychromatic coherent diffractive imaging with a high-order harmonic source[J]. Optics Express, 28, 394-404(2020).
[63] ABBEY B, WHITEHEAD L W, QUINEY H M et al. Lensless imaging using broadband X-ray sources[J]. Nature Photonics, 5, 420-424(2011).
[64] HUIJTS J, FERNANDEZ S, GAUTHIER D et al. Broadband coherent diffractive imaging[J]. Nature Photonics, 14, 618-622(2020).
[65] YAO Y, JIANG Y, KLUG J et al. Broadband X-ray ptychography using multi-wavelength algorithm[J]. Journal of Synchrotron Radiation, 28, 309-317(2021).
[66] CHEN C, GU H, LIU S. Ultra-broadband diffractive imaging with unknown probe spectrum[J]. Light: Science & Applications, 13, 213(2024).
[67] CHEN C, GU H, LIU S. Ultra-simplified diffraction-based computational spectrometer[J]. Light: Science & Applications, 13, 9(2024).
[68] DONG X, PAN X, LIU C et al. Single shot multi-wavelength phase retrieval with coherent modulation imaging[J]. Optics Letters, 43, 1762-1765(2018).
[69] THIBAULT P, MENZEL A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 494, 68-71(2013).
[70] RANA A, ZHANG J, PHAM M et al. Potential of attosecond coherent diffractive imaging[J]. Physical Review Letters, 125, 086101(2020).
[71] JOHNSON A S, CONESA J V, VIDAS L et al. Quantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxide[J]. Science Advances, 7, 1386(2021).
[72] SHAO Y, WEERDENBURG S, SEIFERT J et al. Wavelength-multiplexed multi-mode EUV reflection ptychography based on automatic differentiation[J]. Light: Science & Applications, 13, 196(2024).