• Chip
  • Vol. 3, Issue 3, 100099 (2024)
Richard Soref1、*, Francesco De Leonardis2, Oussama Moutanabbir3, and Gerard Daligou3
Author Affiliations
  • 1Engineering Department, University of Massachusetts at Boston, Boston 02125, USA
  • 2Department of Electrical and Information Engineering, Politecnico di Bari, Bari 70121-70132, Italy
  • 3Department of Engineering Physics, Ecole Polytechnique de Montreal, Montreal 999040, Canada
  • show less
    DOI: 10.1016/j.chip.2024.100099 Cite this Article
    Richard Soref, Francesco De Leonardis, Oussama Moutanabbir, Gerard Daligou. Remote electric powering by germanium photovoltaic conversion of an Erbium-fiber laser beam[J]. Chip, 2024, 3(3): 100099 Copy Citation Text show less
    References

    [1] C. Algora, et al.. Beaming power: photovoltaic laser power converters for power-by-light. Joule, 6 (2022), pp. 340-368.

    [2] Y. Gou, et al.. High-performance laser power converters with resistance to thermal annealing. Opt. Express, 32 (2024), pp. 8335-8342.

    [3] H. Liu, Y. Zhang, Y. Hu, Z. Tse, J. Wu. Laser-power transmission and its application in laser-powered electrical motor drive. Power Electron. Drives, 6 (2021), pp. 167-184.

    [4] H. Haas, J. Elmirghani, I. White. Optical wireless communication. Phil. Trans. R. Soc. A., 378 (2020), p. 20200051.

    [5] N. Javed, N.-L. Nguyen, S.F.A. Naqvi, J. Ha. Long-range wireless optical power transfer system using an EDFA. Opt. Express, 30 (2022), pp. 33767-33779.

    [6] Y. Zheng, et al.. Wireless laser power transmission: recent progress and future challenges. Space Sol. Power Wire. Trans., 1 (2024), pp. 17-26.

    [7] K. Jin, W. Zhou. Wireless laser power transmission: a review of recent progress. IEEE Trans. Power Electron., 34 (2019), pp. 3842-3859.

    [8] W. Xu, X. Wang, W. Li, S. Li, C. Lu. Research on test and evaluation method of laser wireless power transmission system. Eurasip J. Adv. Signal Process., 2022 (2022), p. 20.

    [9] A. Mohammadnia, B.M. Ziapour, H. Ghaebi, M.H. Khooban. Feasibility assessment of next-generation drones powering by laser-based wireless power transfer. Opt. Laser Technol., 143 (2021), p. 107283.

    [10] T. He, et al.. Analysis and experiment of laser energy distribution of laser wireless power transmission based on a powersphere receiver. Photonics, 10 (2023), p. 844.

    [11] W. Zhou, K. Jin. Power control method for improving efficiency of laser-based wireless power transmission system. IET Power Electron., 13 (2020), pp. 2096-2105.

    [12] J. Eom, G. Kim, Y. Park. Maximizing wireless power transfer for electric vehicles with high-intensity laser power beaming and optical orthogonal frequency division multiplexing. Transport. Res. Proceed., 70 (2023), pp. 123-129.

    [13] D. Yao, et al.. Laser wireless power transfer and thermal regulation method driven by transient laser grating. AIP Adv., 12 (2022), p. 105001.

    [14] K. Jin, W. Zhou. Wireless laser power transmission: review of recent progress. IEEE Trans. Power Electron., 34 (2019), pp. 3842-3859.

    [15] Q. Zhang, et al.. Distributed laser charging: a wireless power transfer approach. IEEE Internet Things J., 5 (2018), pp. 3853-3864.

    [16] R. Soref, F. De Leonardis, G. Daligou, O. Montanabbir. Directed high-energy infrared laser beams for photovoltaic generation of electric power at remote locations. APL Energy, 2 (2024), Article 026101.

    [17] N. Osterthun, N. Neugebohrn, K. Gehrke, M. Vehse, C. Agert. Spectral engineering of ultrathin germanium solar cells for combined photovoltaic and photosynthesis. Opt. Express, 29 (2021), pp. 938-950.

    [18] I. Lombardero, M. Ochoa, N. Miyashita, Y. Okada, C. Algora. Theoretical and experimental assessment of thinned germanium substrates for III–V multijunction solar cells. Prog. Photovolt., 28 (2020), pp. 1097-1106.

    [19] B. Hekmatshoar, D. Shahrjerdi, M. Hopstaken, K. Fogel, D.K. Sadana. High-efficiency heterojunction solar cells on crystalline germanium substrates. Appl. Phys. Lett., 101 (2012), Article 032102.

    [20] J. Fernandez, S. Janz, D. Suwito, E. Oliva, F. Dimroth. Advanced concepts for high-efficiency germanium photovoltaic cells.

    [21] G. Sun, F. Chang, R.A. Soref. High efficiency thin-film crystalline Si/Ge tandem solar cell. Opt. Express, 18 (2010), pp. 3746-3753.

    [22] M.S.A. Azizman, et al.. Mixed cations tin-germanium perovskite: a promising approach for enhanced solar cell applications. Heliyon, 10 (2024), Article e29676.

    [23] X. Zhu, et al.. Evaluation of electricity generation on GeSn single-junction solar cell. Int. J. Energy Res., 46 (2022), pp. 14526-14533.

    [24] Z. Zhou, W. Liu, Y. Guo, H. Huang, X. Ding. Design simulation and optimization of germanium-based solar cells with micro-nano cross-cone absorption structure. Coatings, 12 (2022), p. 1653.

    [27] H. Tran, et al.. Systematic study of Ge1-xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics. J. Appl. Phys., 119 (2016), p. 103106.

    [28] G.-E. Chang, S.-Q. Yu, G. Sun. “GeSn rule-23”-the performance limit of GeSn infrared photodiodes. Sensors, 23 (2023), p. 7386.

    [29] V. Baran, et al.. A comprehensive study on a stand-alone germanium (Ge) solar cell. J. Electron. Mater., 49 (2020), pp. 1249-1256.

    [30] P. Singh, N. Ravinda. Temperature dependence of solar cell performance—an analysis. Sol. Energy Mater. Sol. Cells, 101 (2012), pp. 36-45.

    [31] T. Fahey, M. Islam, A. Gardi, R. Sabatini. Laser beam atmospheric propagation modelling for aerospace LIDAR applications. Atmosphere, 12 (2021), p. 918.

    [32] M.M.A. Gamel, et al.. Performance of Ge and In0.53Ga0.47As thermophotovoltaic cells under different spectral irradiances. IEEE Access, 9 (2021), pp. 37091-37102.

    [33] D. Garg, A. Nain. Next-generation optical wireless communication; a comprehensive review. J. Opt. Commun., 44 (2023), pp. s1535-s1550.

    [34] S.M. Walsh, et al.. Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates. Sci. Rep., 12 (2022), p. 18345.

    [35] E. Kessler-Lewis, S.J. Polly, E. Sacchitella, S.M. Hubbard, R. Hoheisel. Demonstration of a monolithically integrated hybrid device for simultaneous power generation and data modulation. IEEE J. Photovoltaics, 14 (2024), pp. 272-280.

    [36] R.A. Soref, G. Sun, H.H. Cheng. Franz-Keldysh electro-absorption modulation in germanium-tin alloys. J. Appl. Phys., 111 (2012), p. 123113.

    [37] B.R. Bennett, R.A. Soref. Analysis of franz-keldysh electro-optic modulation in InP, GaAs, GaSb, InAs, and InSb. 1987 Conference on Optoelectronic Materials, Devices, Packaging, and Interconnects (SPIE, 1987), pp. 158-168.

    [38] S. Lischke, et al.. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics, 15 (2021), pp. 925-931.

    [39] D. Li, et al.. High-speed and high-power Ge-on-Si photodetector with bilateral mode-evolution-based coupler. Photonics, 10 (2023), p. 142.

    [40] P. Moontragoon, R.A. Soref, Z. Ikonic. The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications. J. Appl. Phys., 112 (2012), Article 073106.

    Richard Soref, Francesco De Leonardis, Oussama Moutanabbir, Gerard Daligou. Remote electric powering by germanium photovoltaic conversion of an Erbium-fiber laser beam[J]. Chip, 2024, 3(3): 100099
    Download Citation