• Advanced Photonics
  • Vol. 7, Issue 3, 036003 (2025)
Pengcheng Fu1、†, Bo Chen1, Yongqing Zhang1, Liangyi Chen2, Hyeon Jeong Lee3、4、*, and Delong Zhang1、*
Author Affiliations
  • 1Zhejiang University, School of Physics, Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Hangzhou, China
  • 2Peking University, Institute of Molecular Medicine, School of Future Technology, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing Laboratory of Biomedical Imaging, Beijing, China
  • 3Zhejiang University, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Hangzhou, China
  • 4Zhejiang University, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Hangzhou, China
  • show less
    DOI: 10.1117/1.AP.7.3.036003 Cite this Article Set citation alerts
    Pengcheng Fu, Bo Chen, Yongqing Zhang, Liangyi Chen, Hyeon Jeong Lee, Delong Zhang, "Breaking the diffraction limit in molecular imaging by structured illumination mid-infrared photothermal microscopy," Adv. Photon. 7, 036003 (2025) Copy Citation Text show less
    References

    [1] Y. Zhang et al. Spatial sterol metabolism unveiled by stimulated Raman imaging. Front. Chem., 11, 1166313(2023). https://doi.org/10.3389/fchem.2023.1166313

    [2] J. Chen et al. Chemical morphology of Areca nut characterized directly by Fourier transform near-infrared and mid-infrared microspectroscopic imaging in reflection modes. Food Chem., 212, 469-475(2016). https://doi.org/10.1016/j.foodchem.2016.05.168

    [3] D. Zhang et al. Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis. Anal. Chem., 85, 98-106(2012). https://doi.org/10.1021/ac3019119

    [4] D. Zhang et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci. Adv., 2, e1600521(2016). https://doi.org/10.1126/sciadv.1600521

    [5] P. Fu et al. Super-resolution imaging of non-fluorescent molecules by photothermal relaxation localization microscopy. Nat. Photonics, 17, 330-337(2023). https://doi.org/10.1038/s41566-022-01143-3

    [6] J. Shi et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photonics, 13, 609-615(2019). https://doi.org/10.1038/s41566-019-0441-3

    [7] M. A. Pleitez et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol., 38, 293-296(2019). https://doi.org/10.1038/s41587-019-0359-9

    [8] D. Zhang et al. Bond-selective transient phase imaging via sensing of the infrared photothermal effect. Light Sci. Appl., 8, 116(2019). https://doi.org/10.1038/s41377-019-0224-0

    [9] K. Toda et al. Adaptive dynamic range shift (ADRIFT) quantitative phase imaging. Light Sci. Appl., 10, 1(2021). https://doi.org/10.1038/s41377-020-00435-z

    [10] M. Tamamitsu et al. Label-free biochemical quantitative phase imaging with mid-infrared photothermal effect. Optica, 7, 359-366(2020). https://doi.org/10.1364/OPTICA.390186

    [11] M. Tamamitsu et al. Mid-infrared wide-field nanoscopy. Nat. Photonics, 18, 738-743(2024). https://doi.org/10.1038/s41566-024-01423-0

    [12] L. Gong et al. Saturated stimulated-Raman-scattering microscopy for far-field superresolution vibrational imaging. Phys. Rev. Appl., 11, 034041(2019). https://doi.org/10.1103/PhysRevApplied.11.034041

    [13] J. Shou et al. Super-resolution vibrational imaging based on photoswitchable Raman probe. Sci. Adv., 9, eade9118(2023). https://doi.org/10.1126/sciadv.ade9118

    [14] Y. Zhang et al. Fluorescence-detected mid-infrared photothermal microscopy. J. Am. Chem. Soc., 143, 11490-11499(2021). https://doi.org/10.1021/jacs.1c03642

    [15] M. Li et al. Fluorescence-detected mid-infrared photothermal microscopy. J. Am. Chem. Soc., 143, 10809-10815(2021). https://doi.org/10.1021/jacs.1c03269

    [16] D. Chretien et al. Mitochondria are physiologically maintained at close to 50°C. PLoS Biol., 16, e2003992(2018).

    [17] G. Abbate et al. The temperature dependence of the refractive index of water. J. Phys. D: Appl. Phys., 11, 1167-1172(1978). https://doi.org/10.1088/0022-3727/11/8/007

    [18] H. H. Li. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data, 9, 561-658(1980). https://doi.org/10.1063/1.555624

    [19] F. Balzarotti et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355, 606-612(2016). https://doi.org/10.1126/science.aak9913

    [20] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006). https://doi.org/10.1126/science.1127344

    [21] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994). https://doi.org/10.1364/OL.19.000780

    [22] M. Hofmann et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. U. S. A., 102, 17565-17569(2005). https://doi.org/10.1073/pnas.0506010102

    [23] S. T. Hess et al. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006). https://doi.org/10.1529/biophysj.106.091116

    [24] M. J. Rust et al. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006). https://doi.org/10.1038/nmeth929

    [25] W. Lukosz, M. Marchand. Optischen Abbildung Unter Überschreitung der Beugungsbedingten Auflösungsgrenze. Optica Acta: Int. J. Opt., 10, 241-255(1963). https://doi.org/10.1080/713817795

    [26] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2001). https://doi.org/10.1046/j.1365-2818.2000.00710.x

    [27] Y. Guo et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell, 175, 1430-1442(2018). https://doi.org/10.1016/j.cell.2018.09.057

    [28] X. Huang et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451-459(2018). https://doi.org/10.1038/nbt.4115

    [29] W. Zhao et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat. Biotechnol., 40, 606-617(2021). https://doi.org/10.1038/s41587-021-01092-2

    [30] K. Watanabe et al. Structured line illumination Raman microscopy. Nat. Commun., 6, 10095(2015). https://doi.org/10.1038/ncomms10095

    [31] Y. Bai et al. Bond-selective imaging by optically sensing the mid-infrared photothermal effect. Sci. Adv., 7, eabg1559(2021). https://doi.org/10.1126/sciadv.abg1559

    [32] S. Tu et al. Fast reconstruction algorithm for structured illumination microscopy. Opt. Lett., 45, 1567-1570(2020). https://doi.org/10.1364/OL.387888

    [33] C. S. Smith et al. Structured illumination microscopy with noise-controlled image reconstructions. Nat. Methods, 18, 821-828(2021). https://doi.org/10.1038/s41592-021-01167-7

    [34] Z. Wang et al. High-speed image reconstruction for optically sectioned, super-resolution structured illumination microscopy. Adv. Photonics, 4, 026003(2022). https://doi.org/10.1117/1.AP.4.2.026003

    [35] W.-C. Chen et al. The development and application of two-color pressure-sensitive paint in jet impingement experiments. Aerospace, 10, 805(2023). https://doi.org/10.3390/aerospace10090805

    [36] G. Li et al. The M2 macrophages derived migrasomes from the surface of titania nanotubes array as a new concept for enhancing osteogenesis. Adv. Healthcare Mater., 13, 2400257(2024). https://doi.org/10.1002/adhm.202400257

    [37] P. Xu et al. Superresolution fluorescence microscopy of platelet subcellular structures as a potential tumor liquid biopsy. Small Methods, 7, 2300445(2023). https://doi.org/10.1002/smtd.202300445

    [38] D. Li et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349, aab3500(2015). https://doi.org/10.1126/science.aab3500

    [39] Y. Kashiwagi et al. Computational geometry analysis of dendritic spines by structured illumination microscopy. Nat. Commun., 10, 1285(2019). https://doi.org/10.1038/s41467-019-09337-0

    [40] L. Turnbull et al. Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy (f3D-SIM). J. Vis. Exp., 51469(2014). https://doi.org/10.3791/51469

    [41] G. Ishigane et al. Label-free mid-infrared photothermal live-cell imaging beyond video rate. Light Sci. Appl., 12, 174(2023). https://doi.org/10.1038/s41377-023-01214-2

    [42] K. Wicker, R. Heintzmann. Resolving a misconception about structured illumination. Nat. Photonics, 8, 342-344(2014). https://doi.org/10.1038/nphoton.2014.88

    [43] A. Razumtcev et al. Label-free autofluorescence-detected mid-infrared photothermal microscopy of pharmaceutical materials. Anal. Chem., 94, 6512-6520(2022). https://doi.org/10.1021/acs.analchem.1c05504

    [44] C. B. Prater et al. Widefield super-resolution infrared spectroscopy and imaging of autofluorescent biological materials and photosynthetic microorganisms using fluorescence detected photothermal infrared (FL-PTIR). Appl. Spectrosc., 78, 1208-1219(2024). https://doi.org/10.1177/00037028241256978

    [45] H. Wang et al. Bond-selective fluorescence imaging with single-molecule sensitivity. Nat. Photonics, 17, 846-855(2023). https://doi.org/10.1038/s41566-023-01243-8

    [46] H. Xiong et al. Stimulated Raman excited fluorescence spectroscopy and imaging. Nat. Photonics, 13, 412-417(2019). https://doi.org/10.1038/s41566-019-0396-4

    [47] Y. Bai et al. Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption. Sci. Adv., 5, eaav7127(2019). https://doi.org/10.1126/sciadv.aav7127

    [48] J. Zhou et al. Advances and challenges for fluorescence nanothermometry. Nat. Methods, 17, 967-980(2020). https://doi.org/10.1038/s41592-020-0957-y

    [49] S. Kiyonaka et al. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods, 10, 1232-1238(2013). https://doi.org/10.1038/nmeth.2690

    Pengcheng Fu, Bo Chen, Yongqing Zhang, Liangyi Chen, Hyeon Jeong Lee, Delong Zhang, "Breaking the diffraction limit in molecular imaging by structured illumination mid-infrared photothermal microscopy," Adv. Photon. 7, 036003 (2025)
    Download Citation