[1] S. Yoon, M. Kim, M. Jang et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys., 2, 141(2020).
[2] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73(1990).
[3] L. Li, L. V. Wang. Optical coherence computed tomography. Appl. Phys. Lett., 91, 141107(2007).
[4] J. Wang. Data information transfer using complex optical fields: a review and perspective (Invited Paper). Chin. Opt. Lett., 15, 030005(2017).
[5] D. Huang, E. A. Swanson, C. P. Lin et al. Optical coherence tomography. Science, 254, 1178(1991).
[6] J. G. Fujimoto. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol., 21, 1361(2003).
[7] F. E. Robles, C. Wilson, G. Grant et al. Molecular imaging true-colour spectroscopic optical coherence tomography. Nat. Photonics, 5, 744(2011).
[8] W. Wei, A. Cogliati, C. Canavesi. Model-based optical coherence tomography angiography enables motion-insensitive vascular imaging. Biomed. Opt. Express, 12, 2149(2021).
[9] T. R. Hillman, A. Curatolo, B. F. Kennedy et al. Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans. Opt. Lett., 35, 1998(2010).
[10] M. Adhi, J. S. Duker. Optical coherence tomography–current and future applications. Curr. Opin. Ophthalmol., 24, 213(2013).
[11] K. Deng, Q. Chen, Y. Bai et al. Compact long-working-distance laser-diode-based photoacoustic microscopy with a reflective objective. Chin. Opt. Lett., 19, 071701(2021).
[12] A. Badon, D. Li, G. Lerosey et al. Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci. Adv., 2, e1600370(2016).
[13] Q. Yang, Y. Miao, T. Huo et al. Deep imaging in highly scattering media by combining reflection matrix measurement with Bessel-like beam based optical coherence tomography. Appl. Phys. Lett., 113, 011106(2018).
[14] S. M. Popoff, G. Lerosey, R. Carminati et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).
[15] A. Badon, D. Li, G. Lerosey et al. Spatio-temporal imaging of light transport in highly scattering media under white light illumination. Optica, 3, 1160(2016).
[16] J. Cao, Q. Yang, Y. Miao et al. Enhance the delivery of light energy ultra-deep into turbid medium by controlling multiple scattering photons to travel in open channels. Light Sci. Appl., 11, 108(2022).
[17] J. Cao, Q. Yang, Y. Miao et al. High-speed wavefront determination method based on single in-and-out electric field analysis to focus light through highly scattering medium. APL Photonics, 6, 036107(2021).
[18] Q. Yang, J. Cao, Y. Miao et al. Extended imaging depth of en-face optical coherence tomography based on fast measurement of a reflection matrix by wide-field heterodyne detection. Opt. Lett., 45, 828(2020).
[19] M. Kim, Y. Choi, C. Yoon et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photonics, 6, 581(2012).
[20] H. Lee, S. Yoon, P. Loohuis et al. High-throughput volumetric adaptive optical imaging using compressed time-reversal matrix. Light Sci. Appl., 11, 16(2022).
[21] M. Kim, Y. Jo, J. H. Hong et al. Label-free neuroimaging in vivo using synchronous angular scanning microscopy with single-scattering accumulation algorithm. Nat. Commun., 10, 3152(2019).
[22] Y. Zhang, C. Wang, S. Tong et al. Separating single-and multiple-scattering components in laser speckle contrast imaging of tissue blood flow. Biomed. Opt. Express, 13, 2881(2022).
[23] P. Wojtaszczyk. Stability and instance optimality for Gaussian measurements in compressed sensing. Found. Comput. Math., 10, 1(2010).
[24] E. J. Candès, J. Romberg, T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52, 489(2006).
[25] M. Lustig, D. Donoho, J. M. Pauly. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med., 58, 1182(2007).
[26] Z. Guo, C. Li, L. Song et al. Compressed sensing in photoacoustic tomography in vivo. J. Biomed. Opt., 15, 021311(2010).
[27] N. Zhang, T. Huo, C. Wang et al. Compressed sensing for optical coherence tomography with super-resolution imaging. Opt. Lett., 37, 1424(2012).
[28] X. Liu, J. U. Kang. Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography. Opt. Express, 18, 22010(2010).
[29] D. Xu, N. Vaswani, Y. Huang et al. Modified compressive sensing optical coherence tomography with noise reduction. Opt. Lett., 37, 4209(2012).
[30] W. Liao, J. Hsieh, C. Wang et al. Compressed sensing spectral domain optical coherence tomography with a hardware sparse-sampled camera. Opt. Lett., 44, 2955(2019).
[31] D. Xu, Y. Huang, J. U. Kang. Real-time compressive sensing spectral domain optical coherence tomography. Opt. Lett., 39, 76(2013).
[32] J. Luo, Y. Fan, H. Zhou et al. Fabrication of different fine fiber tips for near field scanning optical microscopy by a simple chemical etching technique. Chin. Opt. Lett., 5, S232(2007).
[33] H. Li, Z. Yu, Q. Zhao et al. Learning-based super-resolution interpolation for sub-Nyquist sampled laser speckles. Photonics Research, 11, 631(2023).
[34] Z. Yu, H. Li, T. Zhong et al. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields. Innovation, 3, 100292(2022).
[35] L. Yang, T Han, J. Meng et al. Optimized number of the primary singular values for image reconstruction in reflection matrix based optical coherence tomography. Opt. Express, 30, 2680(2022).
[36] S. Popoff, G. Lerosey, M. Fink et al. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).
[37] Y. Yang, B. S. Kang, Y. J. Choo. Application of the correlation coefficient method for determination of the focal plane to digital particle holography. Appl. Opt., 47, 817(2008).
[38] Y. Zhang, X. Li, G. Zhao et al. Signal reconstruction of compressed sensing based on alternating direction method of multipliers. Circuits Syst. Signal Process., 39, 307(2020).
[39] S. Chen, H. Du, L. Wu et al. Compressed sensing MRI via fast linearized preconditioned alternating direction method of multipliers. Biomed. Eng. Online, 16, 1(2017).
[40] Z. Liu, S. Yu. Alternating direction method of multipliers based on ℓ2,0-norm for multiple measurement vector problem. IEEE Trans. Signal Process., 71, 3490(2023).
[41] R. Heckel, M. Soltanolkotabi. Compressive sensing with un-trained neural networks: Gradient descent finds a smooth approximation. International Conference on Machine Learning, 4058(2020).
[42] J. Li, W. Cui, X. Zhang. Projected gradient descent for spectral compressed sensing via symmetric Hankel factorization. IEEE Trans. Signal Process., 72, 1590(2024).
[43] Y. Liu, Z. Zhan, J. F. Cai et al. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging. IEEE Trans. Med. Imaging, 35, 2130(2016).
[44] H. Wang, S. Yang, Y. Liu et al. Compressive sensing reconstruction for rolling bearing vibration signal based on improved iterative soft thresholding algorithm. Measurement, 210, 112528(2023).
[45] Y. Zhang, X. Li, G. Zhao et al. Signal reconstruction of compressed sensing based on alternating direction method of multipliers. Circuits Syst. Signal Process., 39, 307(2020).
[46] T. Van Chien, K. Q. Dinh, B. Jeon et al. Block compressive sensing of image and video with nonlocal Lagrangian multiplier and patch-based sparse representation. Signal Process. Image Commun., 54, 93(2017).
[47] X. Zhu, L. Lu, Z. Cao et al. Transmission matrix-based electric field Monte Carlo study and experimental validation of the propagation characteristics of Bessel beams in turbid media. Opt. Lett., 43, 4835(2018).
[48] P. Miao, Y. Zhang, C. Wang et al. Random matrix description of dynamically backscattered coherent waves propagating in a wide-field-illuminated random medium. Appl. Phys. Lett., 120(2022).
[49] Y. Wang, P. Li, C. Jiang et al. GPU accelerated electric field Monte Carlo simulation of light propagation in turbid media using a finite-size beam model. Opt. Express, 20, 16618(2012).
[50] Q. Zhao, L. Chen, X. Hu et al. Sub-diffraction-limit imaging with a transmission matrix in disordered media. Opt. Lett., 41, 2118(2016).
[51] J. Dai, Y. Xu, F. Zhang et al. Novel imaging method based on spatially varying transmission matrices for enhanced resolution in complex scattering media. Biomed. Opt. Express, 12, 4130(2021).
[52] L. Zhang, Y. Huang, X. Li et al. High-resolution optical imaging through scattering media with a dual-polarization approach. Sci. Rep., 12, 8914(2022).