• Chinese Optics Letters
  • Vol. 23, Issue 4, 041201 (2025)
Jiqing Lian1、2, Qiaohui Yang3, Tianyu Liu3, Duo Pan3、*, Jie Miao3, Zhendong Chen3, Jingming Chen3, Jiang Chen2, Lina Bai1、**, Zhidong Liu2, and Jingbiao Chen1、3、4
Author Affiliations
  • 1School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
  • 2Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
  • 3State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University, Beijing 100871, China
  • 4Hefei National Laboratory, Hefei 230088, China
  • show less
    DOI: 10.3788/COL202523.041201 Cite this Article Set citation alerts
    Jiqing Lian, Qiaohui Yang, Tianyu Liu, Duo Pan, Jie Miao, Zhendong Chen, Jingming Chen, Jiang Chen, Lina Bai, Zhidong Liu, Jingbiao Chen, "Compact optical frequency standard based on a miniature cell using modulation transfer spectroscopy," Chin. Opt. Lett. 23, 041201 (2025) Copy Citation Text show less
    References

    [1] B. J. Bloom, T. L. Nicholson, J. R. Williams et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature, 506, 71(2014).

    [2] Y. Lin, Q. Wang, F. Meng et al. A 87 Sr optical lattice clock with 2.9 × 10−17 uncertainty and its absolute frequency measurement. Metrologia, 58, 035010(2021).

    [3] Y. Huang, H. Guan, P. Liu et al. Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level. Phys. Rev. Lett., 116, 013001(2016).

    [4] P. Gill. Optical frequency standards. Metrologia, 42, S125(2005).

    [5] J. D. Roslund, A. Cingöz, W. D. Lunden et al. Optical clocks at sea. Nature, 628, 736(2024).

    [6] K. Döringshoff, T. Schuldt, E. V. Kovalchuk et al. A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm. Appl. Phys. B, 123, 183(2017).

    [7] T. Schuldt, K. Döringshoff, E. V. Kovalchuk et al. Development of a compact optical absolute frequency reference for space with 10−15 instability. Appl. Opt., 56, 1101(2017).

    [8] K. Döringshoff, F. B. Gutsch, V. Schkolnik et al. Iodine frequency reference on a sounding rocket. Phys. Rev. Appl., 11, 054068(2019).

    [9] A. Mehlman, D. Holleville, M. Lours et al. Iodine based reference laser for ground tests of LISA payload. Proc. SPIE, 12777, 127777E(2022).

    [10] A. Strangfeld, S. Kanthak, M. Schiemangk et al. Prototype of a compact rubidium-based optical frequency reference for operation on nanosatellites. J. Opt. Soc. Am. B, 38, 1885(2021).

    [11] M. T. Hummon, S. Kang, D. G. Bopp et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica, 5, 443(2018).

    [12] Z. L. Newman, V. Maurice, C. Fredrick et al. High-performance, compact optical standard. Opt. Lett., 46, 4702(2021).

    [13] V. Maurice, Z. L. Newman, S. Dickerson et al. Miniaturized optical frequency reference for next-generation portable optical clocks. Opt. Express, 28, 24708(2020).

    [14] Z. L. Newman, V. Maurice, T. Drake et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680(2019).

    [15] K. W. Martin, G. Phelps, N. D. Lemke et al. Compact optical atomic clock based on a two-photon transition in rubidium. Phys. Rev. Appl., 9, 014019(2018).

    [16] A. Strangfeld, B. Wiegand, J. Kluge et al. Compact plug and play optical frequency reference device based on Doppler-free spectroscopy of rubidium vapor. Opt. Express, 30, 12039(2022).

    [17] C. Perrella, P. S. Light, J. D. Anstie et al. Dichroic two-photon rubidium frequency standard. Phys. Rev. Appl., 12, 054063(2019).

    [18] S. Lee, S. B. Lee, S. E. Park et al. Compact modulation transfer spectroscopy module for highly stable laser frequency. Opt. Lasers Eng., 146, 106698(2021).

    [19] S. Lee, G. Moon, S. E. Park et al. Laser frequency stabilization in the 10−14 range via optimized modulation transfer spectroscopy on the 87Rb D2 line. Opt. Lett., 48, 1020(2023).

    [20] J. Miao, T. Shi, J. Zhang et al. Compact 459-nm Cs cell optical frequency standard with 2.1 × 10−13/τ short-term stability. Phys. Rev. Appl., 18, 024034(2022).

    [21] H. Shang, T. Zhang, J. Miao et al. Laser with 10−13 short-term instability for compact optically pumped cesium beam atomic clock. Opt. Express, 28, 6868(2020).

    [22] H. Shi, P. Chang, Z. Wang et al. Frequency stabilization of a cesium Faraday laser with a double-layer vapor cell as frequency reference. IEEE Photonics J., 14, 1561005(2022).

    [23] A. Gusching, J. Millo, I. Ryger et al. Cs microcell optical reference with frequency stability in the low 10−13 range at 1 s. Opt. Lett., 48, 1526(2023).

    [24] A. Gusching, M. Petersen, N. Passilly et al. Short-term stability of Cs microcell-stabilized lasers using dual-frequency sub-Doppler spectroscopy. J. Opt. Soc. Am. B, 38, 3254(2021).

    [25] D. Brazhnikov, M. Petersen, G. Coget et al. Dual-frequency sub-Doppler spectroscopy: extended theoretical model and microcell-based experiments. Phys. Rev. A, 99, 062508(2019).

    [26] M. Violetti, M. Pellaton, C. Affolderbach. The Microloop-Gap Resonator: a novel miniaturized microwave cavity for double-resonance rubidium atomic clocks. IEEE Sens. J., 14, 3193(2014).

    [27] E. Batori, C. Affolderbach, M. Pellaton et al. μPOP Clock: a microcell atomic clock based on a double-resonance Ramsey scheme. Phys. Rev. Appl., 18, 054039(2022).

    [28] R. Vicarini, V. Maurice, M. Abdel Hafiz et al. Demonstration of the mass-producible feature of a Cs vapor microcell technology for miniature atomic clocks. Sens. Actuators A: Phys., 280, 99(2018).

    [29] S. S. Losev, D. I. Sevostianov, V. V. Vassiliev et al. Production of miniature glass cells with rubidium for chip scale atomic clock. Phys. Procedia, 71, 242(2015).

    Jiqing Lian, Qiaohui Yang, Tianyu Liu, Duo Pan, Jie Miao, Zhendong Chen, Jingming Chen, Jiang Chen, Lina Bai, Zhidong Liu, Jingbiao Chen, "Compact optical frequency standard based on a miniature cell using modulation transfer spectroscopy," Chin. Opt. Lett. 23, 041201 (2025)
    Download Citation