[6] ROSE L, MENON M, KAMMER K, et al. Processing of Ce1-xGdxO2- (GDC) thin films from precursors for application in solid oxide fuel cells[J]. Advanced Materials Research, 2006, 15/16/17: 293-298.
[7] LEE Y L, KLEIS J, ROSSMEISL J, et al. Prediction of solid oxidefuel cell cathode activity with first-principles descriptors[J]. Energy & Environmental Science, 2011, 4(10): 3966-3970.
[8] RAILSBACK J, CHOI S H, BARNETT S A. Effectiveness of dense Gd-doped ceria barrier layers for (La, Sr)(Co, Fe)O3 cathodes on Yttria-stabilized zirconia electrolytes[J]. Solid State Ionics, 2019, 335: 74-81.
[9] OH E O, WHANG C M, LEE Y R, et al. Fabrication of thin-film gadolinia-doped ceria (GDC) interdiffusion barrier layers for intermediate-temperature solid oxide fuel cells (IT-SOFCs) by chemical solution deposition (CSD)[J]. Ceramics International, 2014, 40(6): 8135-8142.
[11] HU S, LI W, YAO M, et al. Electrophoretic deposition of gadolinium-doped ceria as a barrier layer on yttrium-stabilized zirconia electrolyte for solid oxide fuel cells[J]. Fuel Cells, 2017, 17(6): 869-874.
[12] CHAN S. A simple bilayer electrolyte model for solid oxide fuel cells[J]. Solid State Ionics, 2003, 158(1/2): 29-43.
[13] LIANG F Y, YANG J R, WANG H Q, et al. Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(6): 1190-1197.
[14] CHOI S H, HWANG C S, LEE H W, et al. Fabrication of Gd2O3-doped CeO2 thin films for single-chamber-type solid oxide fuel cells and their characterization[J]. Journal of the Electrochemical Society, 2009, 156(3): B381.
[20] XIONG C Y, XU S, LI X T, et al. Surface regulating and hetero-interface engineering of an LSCF cathode by CVD for solid oxide fuel cells: integration of improved electrochemical performance and Cr-tolerance[J]. Journal of Materials Chemistry A, 2023, 11(29): 15760-15768.
[21] ZHAO P, SU S, WANG Y, et al. High-speed preparation of highly (100)-oriented CeO2 film by laser chemical vapor deposition[J]. Journal of the American Ceramic Society, 2016, 99(9): 3104-3110.
[22] ZHAO P, ITO A, TU R, et al. High-speed epitaxial growth of (100)-oriented CeO2 film on r-cut sapphire by laser chemical vapor deposition[J]. Surface and Coatings Technology, 2011, 205(16): 4079-4082.