• Advanced Photonics Nexus
  • Vol. 4, Issue 3, 036004 (2025)
Linzheng Wang1、2, Yanping Chen1、2、*, Chen Wang1、2, Huanyu Song1、2, Jinyu Hua1、2, Rong Huang1、2, Min Chen1、2, Jie Zhang1、2、3, and Zhengming Sheng1、2、3、*
Author Affiliations
  • 1Shanghai Jiao Tong University, School of Physics and Astronomy, Key Laboratory for Laser and Plasma (MOE), Shanghai, China
  • 2Shanghai Jiao Tong University, Collaborative Innovation Centre of IFSA, Shanghai, China
  • 3Tsung-Dao Lee Institute, Shanghai, China
  • show less
    DOI: 10.1117/1.APN.4.3.036004 Cite this Article Set citation alerts
    Linzheng Wang, Yanping Chen, Chen Wang, Huanyu Song, Jinyu Hua, Rong Huang, Min Chen, Jie Zhang, Zhengming Sheng, "Terahertz vortices with tunable topological charges from a laser–plasma channel," Adv. Photon. Nexus 4, 036004 (2025) Copy Citation Text show less
    References

    [1] Y. Fang et al. Structured electrons with chiral mass and charge. Science, 385, 183-187(2014). https://doi.org/10.1126/science.adp9143

    [2] F. Nan et al. Creating stable trapping force and switchable optical torque with tunable phase of light. Sci. Adv., 8, eadd6664(2022). https://doi.org/10.1126/sciadv.add6664

    [3] A. Nicolas et al. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics, 8, 234-238(2014). https://doi.org/10.1038/nphoton.2013.355

    [4] G. Walker et al. Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. Phys. Rev. Lett., 108, 243601(2012). https://doi.org/10.1103/PhysRevLett.108.243601

    [5] D. Cozzolino et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photonics, 1, 046005(2019). https://doi.org/10.1117/1.AP.1.4.046005

    [6] B. Ndagano et al. Characterizing quantum channels with non-separable states of classical light. Nat. Phys., 13, 397-402(2017). https://doi.org/10.1038/nphys4003

    [7] F. Tamburini et al. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett., 97, 163903(2006). https://doi.org/10.1103/PhysRevLett.97.163903

    [8] S. Huang et al. Spatiotemporal vortex strings. Sci. Adv., 10, eadn6206(2024). https://doi.org/10.1126/sciadv.adn6206

    [9] Z. Zhang et al. Ultrafast control of fractional orbital angular momentum of microlaser emissions. Light Sci. Appl., 9, 179(2020). https://doi.org/10.1038/s41377-020-00415-3

    [10] G. Tkachenko et al. Is it possible to create a perfect fractional vortex beam?. Optica, 4, 330-333(2017). https://doi.org/10.1364/OPTICA.4.000330

    [11] H. Zhang et al. Review on fractional vortex beam. Nanophotonics, 11, 241-273(2022). https://doi.org/10.1515/nanoph-2021-0616

    [12] Z. Man et al. Focal and optical trapping behaviors of radially polarized vortex beam with broken axial symmetry. AIP Adv., 7, 065109(2017). https://doi.org/10.1063/1.4984813

    [13] R. Dasgupta et al. Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode. Opt. Express, 19, 7680-7688(2011). https://doi.org/10.1364/OE.19.007680

    [14] A. E. Willner et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66-106(2015). https://doi.org/10.1364/AOP.7.000066

    [15] Z. Liu et al. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 123, 183902(2015). https://doi.org/10.1103/PhysRevLett.123.183902

    [16] C. Maurer et al. What spatial light modulators can do for optical microscopy. Laser Photonics Rev., 5, 81-101(2011). https://doi.org/10.1002/lpor.200900047

    [17] S. S. R. Oemrawsingh et al. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Phys. Rev. Lett., 95, 240501(2005). https://doi.org/10.1103/PhysRevLett.95.240501

    [18] Y. Iguchi et al. Superconducting vortices carrying a temperature-dependent fraction of the flux quantum. Science, 380, 1244-1247(2023). https://doi.org/10.1126/science.abp9979

    [19] M. Taghinejad et al. Determining hot-carrier transport dynamics from terahertz emission. Science, 382, 299-305(2023). https://doi.org/10.1126/science.adj5612

    [20] P. A. Banks, E. M. Kleist, M. T. Ruggiero. Investigating the function and design of molecular materials through terahertz vibrational spectroscopy. Nat. Rev. Chem., 7, 480-495(2023). https://doi.org/10.1038/s41570-023-00487-w

    [21] R. Jia et al. Valley-conserved topological integrated antenna for100-Gbps THz 6G wireless. Sci. Adv., 9, eadi8500(2023). https://doi.org/10.1126/sciadv.adi8500

    [22] C. Zhang et al. Control of the spin angular momentum and orbital angular momentum of a reflected wave by multifunctional graphene metasurfaces. Materials, 11, 1054(2018). https://doi.org/10.3390/ma11071054

    [23] H. Wang et al. Recent advances in generation of terahertz vortex beams and their applications. Chin. Phys. B, 29, 097404(2020). https://doi.org/10.1088/1674-1056/aba2df

    [24] E. Pickwell, V. Wallace. Biomedical applications of terahertz technology. J. Phys. D: Appl. Phys., 39, R301(2006). https://doi.org/10.1088/0022-3727/39/17/R01

    [25] L. Zhao et al. Femtosecond relativistic electron beam with reduced timing jitter from THz driven beam compression. Phys. Rev. Lett., 124, 054802(2020). https://doi.org/10.1103/PhysRevLett.124.054802

    [26] K. Miyamoto et al. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate. Appl. Phys. Lett., 104, 261104(2014). https://doi.org/10.1063/1.4886407

    [27] R. Imai et al. Generation of broadband terahertz vortex beams. Opt. Lett., 39, 3714-3717(2014). https://doi.org/10.1364/OL.39.003714

    [28] J. Xie et al. Integrated terahertz vortex beam emitter for rotating target detection. Adv. Photonics, 5, 066002(2023). https://doi.org/10.1117/1.AP.5.6.066002

    [29] B. Wang et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics, 14, 623-628(2020). https://doi.org/10.1038/s41566-020-0658-1

    [30] M. Ivanov et al. Intensity modulated terahertz vortex wave generation in air plasma by two-color femtosecond laser pulses. Opt. Lett., 44, 3889(2019). https://doi.org/10.1364/OL.44.003889

    [31] H. Wang et al. Generation and evolution of different terahertz singular beams from long gas-plasma filaments. Opt. Express, 29, 996(2021). https://doi.org/10.1364/OE.413483

    [32] H. Sobhani, E. Dadar. Terahertz vortex generation methods in rippled and vortex plasmas. J. Opt. Soc. Amer. A, 36, 1187(2019). https://doi.org/10.1364/JOSAA.36.001187

    [33] M. Chen et al. Tunable synchrotron-like radiation from centimeter scale plasma channels. Light: Sci. Appl., 5, e16015(2016). https://doi.org/10.1038/lsa.2016.15

    [34] A. Butler, D. Spence, S. Hooker. Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide. Phys. Rev. Lett., 89, 185003(2002). https://doi.org/10.1103/PhysRevLett.89.185003

    [35] J. Luo et al. A compact tunable polarized X-ray source based on laser-plasma helical undulators. Sci. Rep., 6, 29101(2016). https://doi.org/10.1038/srep29101

    [36] C. Miao, J. P. Palastro, T. M. Antonsen. High-power tunable laser driven THz generation in corrugated plasma waveguides. Phys. Plasmas, 24, 043109(2017). https://doi.org/10.1063/1.4981218

    [37] L. Zhang et al. Strong terahertz radiation from a liquid-water line. Phys. Rev. Appl., 12, 014005(2019). https://doi.org/10.1103/PhysRevApplied.12.014005

    [38] L. Zhang et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios. Phys. Rev. Lett., 119, 235001(2017). https://doi.org/10.1103/PhysRevLett.119.235001

    [39] Z. Zhang et al. Controllable terahertz radiation from a linear-dipole array formed by a two-color laser filament in air. Phys. Rev. Lett., 117, 243901(2016). https://doi.org/10.1103/PhysRevLett.117.243901

    [40] L. Feder et al. Self-waveguiding of relativistic laser pulses in neutral gas channels. Phys. Rev. Res., 2, 043173(2020). https://doi.org/10.1103/PhysRevResearch.2.043173

    [41] K. Oubrerie et al. Controlled acceleration of GeV electron beams in an all-optical plasma waveguide. Light: Sci. Appl., 11, 180(2022). https://doi.org/10.1038/s41377-022-00862-0

    [42] N. Lemos et al. Plasma expansion into a waveguide created by a linearly polarized femtosecond laser pulse. Phys. Plasmas, 12, 070707(2005). https://doi.org/10.1063/1.4810797

    [43] R. A. Fonseca et al. OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. Lecture Notes in Computer Science, 2331, 342-351(2002). https://doi.org/10.1007/3-540-47789-6_36

    [44] C. D’Amico et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett., 98, 235002(2007). https://doi.org/10.1103/PhysRevLett.98.235002

    [45] P. Sprangle et al. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E, 69, 066415(2004). https://doi.org/10.1103/PhysRevE.69.066415

    [46] H. C. Wu et al. Terahertz radiation from a laser plasma filament. Phys. Rev. E, 83, 036407(2011). https://doi.org/10.1103/PhysRevE.83.036407

    [47] L. Wang et al. Tunable high-field terahertz radiation from plasma channels. Laser Photonics Rev., 17, 2200627(2023). https://doi.org/10.1002/lpor.202200627

    [48] A. J. Gonsalves et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett., 122, 084801(2019). https://doi.org/10.1103/PhysRevLett.122.084801

    [49] X. Zhu et al. Experimental demonstration of laser guiding and wakefield acceleration in a curved plasma channel. Phys. Rev. Lett., 130, 215001(2023). https://doi.org/10.1103/PhysRevLett.130.215001

    Linzheng Wang, Yanping Chen, Chen Wang, Huanyu Song, Jinyu Hua, Rong Huang, Min Chen, Jie Zhang, Zhengming Sheng, "Terahertz vortices with tunable topological charges from a laser–plasma channel," Adv. Photon. Nexus 4, 036004 (2025)
    Download Citation