[1] LEVINSON H J. Extreme ultraviolet lithography[M]. Bellingham, Washington: SPIE,2020.
[2] LEVINSON H J. High-NA EUV lithography: current status and outlook for the future[J]. Japanese Journal of Applied Physics,2022,61: SD0803.
[3] RAO Changhui, ZHONG Libo, GUO Youming, et al. Astronomical adaptive optics: A review[J]. PhotoniX,2024,5:1-52.
[6] NAKASHIMA T, OHMURA Y, OGATA T, et al. Thermal aberration control in projection lens[C]∥San Jose, California, USA: SPIE Advanced Lithography, Proceedings of SPIE,2008,6924(2):69241V.1-69241V.9.
[7] GUO K, NI M Y, CHEN H N, et al. A monolithic adjusting mechanism for optical elementbased on modified 6-PSS parallel mechanism[J]. Sensors and Actuators A Physical,2016,251:1-9.
[8] OHMURA Y, TSUGE Y, HIRAYAMA T, et al. High-order aberration control during exposure for leading-edge lithography projection optics[C]∥San Jose, California, USA: SPIE Advanced Lithography, Proceedings of SPIE, 2016,9780:97800Y.1-97800Y.8.
[9] SAATHOF R, SCHUTTEN G J M, SPRONCK J W, et al. Actuation profiles to form Zernike shapes with a thermal active mirror[J]. Optics Letters,2015,40(2):205-208.
[10] Carl Zeiss SMT GmbH. Projection objective of a microlithographic projection exposure apparatus[P]. United States: US7982969B2,2010.
[11] PENG Tairan, CUI Yuguo, MA Jianqiang, et al. A low-cost deformable lens for correction of low-order aberrations[J]. Optics Communications,2020,460:125209.