• Ultrafast Science
  • Vol. 4, Issue 1, 0048 (2024)
Muhammad Aamir Iqbal1, Wang Lin1, Wang Pengyun1, Jianrong Qiu2, and Xiaofeng Liu1、*
Author Affiliations
  • 1School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
  • 2State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
  • show less
    DOI: 10.34133/ultrafastscience.0048 Cite this Article
    Muhammad Aamir Iqbal, Wang Lin, Wang Pengyun, Jianrong Qiu, Xiaofeng Liu. Ultrafast Plasmonics for All-Optical Switching and Pulsed Lasers[J]. Ultrafast Science, 2024, 4(1): 0048 Copy Citation Text show less
    References

    [1] Liu X, Guo Q, Qiu J. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017;29(14): Article 1605886.

    [2] Kriegel I, Urso C, Viola D, De Trizio L, Scotognella F, Cerullo G, Manna L. Ultrafast photodoping and plasmon dynamics in fluorine–indium codoped cadmium oxide nanocrystals for all-optical signal manipulation at optical communication wavelengths. J Phys Chem Lett. 2016;7(19):3873–3881.

    [3] Guo P, Schaller RD, Ketterson JB, Chang RP. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat Photonics. 2016;10(4):267–273.

    [4] Baig SA, Boland JL, Damry DA, Tan HH, Jagadish C, Joyce HJ, Johnston MB. An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires. Nano Lett. 2017;17(4):2603–2610.

    [5] Chai Z, Zhu Y, Hu X, Yang X, Gong Z, Wang F, Yang H, Gong Q. On-chip optical switch based on plasmon–photon hybrid nanostructure-coated multicomponent nanocomposite. Adv Opt Mater. 2016;4(8):1159–1166.

    [6] Nurmohammadi T, Abbasian K, Yadipour R. Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator. Opt Commun. 2018;410:142–147.

    [7] McPolin C, Olivier N, Bouillard JS, O'Connor D, Krasavin AV, Dickson W, Wurtz GA, Zayats AV. Universal switching of plasmonic signals using optical resonator modes. Light Sci Appl. 2017;6(6): Article e16237.

    [8] Guo Q, Cui Y, Yao Y, Ye Y, Yang Y, Liu X, Zhang S, Liu X, Qiu J, Hosono H. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv. Mater. 2017;29(27): Article 1700754.

    [9] Zhang X, He J, Wang Y, Liu F. Terahertz beat oscillation of plasmonic electrons interacting with femtosecond light pulses. Sci. Rep. 2016;6: Article 18902.

    [10] Wang K, Chen L, Zhang H, Chen J. Controlling surface plasmon polaritons at femtosecond timescales on an aluminum-coated grating. Appl. Phys. Lett. 2017;110: Article 021105.

    [11] Zhang X, Zhang D, Tan D, Xian Y, Liu X, Qiu J. Highly defective nanocrystals as ultrafast optical switches: Nonequilibrium synthesis and efficient nonlinear optical response. Chem. Mater. 2020;32(23):10025–10034.

    [12] Vasa P, Wang W, Pomraenke R, Maiuri MA, Manzoni CR, Cerullo G, Lienau C. Optical stark effects in J-aggregate–metal hybrid nanostructures exhibiting a strong exciton–surface-plasmon-polariton interaction. Phys. Rev. Lett. 2015;114(3): Article 036802.

    [13] Kim J, Carnemolla EG, DeVault C, Shaltout AM, Faccio D, Shalaev VM, Kildishev AV, Ferrera M, Boltasseva A. Dynamic control of nanocavities with tunable metal oxides. Nano Lett. 2018;18(2):740–746.

    [14] Della Valle GI, Polli DA, Biagioni PA, Martella C, Giordano MC, Finazzi MA, Longhi ST, Duò LA, Cerullo G, de Mongeot FB. Self-organized plasmonic metasurfaces for all-optical modulation. Phys Rev B. 2015;91: Article 235440.

    [15] Sharma Y, Tiruveedhula VA, Muth JF, Dhawan A. VO2 based waveguide-mode plasmonic nano-gratings for optical switching. Opt. Express. 2015;23(5):5822–5849.

    [16] Sim S, Jang H, Koirala N, Brahlek M, Moon J, Sung JH, Park J, Cha S, Oh S, Jo MH, et al. Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons. Nat. Commun. 2015;6: Article 8814.

    [17] Zhang X, Sun B, Hodgkiss JM, Friend RH. Tunable ultrafast optical switching via waveguided gold nanowires. Adv. Mater. 2008;20(23):4455–4459.

    [18] Lu C, Hu X, Shi K, Hu Q, Zhu R, Yang H, Gong Q. An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces. Light Sci Appl. 2015;4: Article e302.

    [19] Thomas A, Savaliya P, Kumar K, Ninawe A, Dhawan A. Au nanowire-VO2 spacer-Au film based optical switches. J Opt Soc Am B. 2018;35(7):1687–1697.

    [20] Kim DS, Hohng SC, Malyarchuk V, Yoon YC, Ahn YH, Yee KJ, Park JW, Kim J, Park QH, Lienau C. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 2003;91(14): Article 143901.

    [21] Ropers C, Park DJ, Stibenz G, Steinmeyer G, Kim J, Kim DS, Lienau C. Femtosecond light transmission and subradiant damping in plasmonic crystals. Phys. Rev. Lett. 2005;94(11): Article 113901.

    [22] Klein-Wiele JH, Simon P, Rubahn HG. Size-dependent plasmon lifetimes and electron-phonon coupling time constants for surface bound Na clusters. Phys. Rev. Lett. 1998;80(1):45.

    [23] Zhang X, Yang J. Ultrafast plasmonic optical switching structures and devices. Front Phys. 2019;15(7):190.

    [24] Koya AN, Romanelli M, Kuttruff J, Henriksson N, Stefancu A, Grinblat G, De Andres A, Schnur F, Vanzan M, Marsili M, et al. Advances in ultrafast plasmonics. arXiv:2211.08241 (2022).

    [25] Pohl M, Belotelov VI, Akimov IA, Kasture S, Vengurlekar AS, Gopal AV, Zvezdin AK, Yakovlev DR, Bayer M. Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons. Phys Rev B. 2012;85(8): Article 081401.

    [26] Della Valle G, Scotognella F, Kandada AR, Zavelani-Rossi M, Li H, Conforti M, Longhi S, Manna L, Lanzani G, Tassone F. Ultrafast optical mapping of nonlinear plasmon dynamics in Cu2–xSe nanoparticles. J Phys Chem Lett. 2013;4(19):3337–3344.

    [27] Abb M, Wang Y, De Groot CH, Muskens OL. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas. Nat. Commun. 2014;5:4869.

    [28] Huang CH, Lin HY, Lau BC, Liu CY, Chui HC, Tzeng Y. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays. Opt. Express. 2010;18(26):27891–27899.

    [29] Guo Q, Qin Z, Wang Z, Weng Y-X, Liu X, Xie G, Qiu J. Broadly tunable plasmons in doped oxide nanoparticles for ultrafast and broadband mid-infrared all-optical switching. ACS Nano. 2018;12(12):12770–12777.

    [30] Zhang X, Huang C, Wang M, Huang P, He X, Wei Z. Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles. Sci. Rep. 2018;8(1):10499.

    [31] Iqbal MA, Malik M, Shahid W, Ahmad W, Min-Dianey KA, Pham PV. Plasmonic 2D materials: Overview, advancements, future prospects and functional applications. In: Pham P, editor. 21st century nanostructured materials: Physics, chemistry, classification, and emerging applications in industry, biomedicine, and agriculture. London (UK): IntechOpen; 2022.

    [32] Yang J, Fu Y, Zhang X. A self-supported ultrathin plasmonic film for ultrafast optical switching. Nanoscale Adv. 2022;4(3):943–951.

    [33] Lin Y, Zhang X, Fang X, Liang S. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching. Nanoscale. 2016;8(3):1421–1429.

    [34] Noguez C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C. 2007;111(10):3806–3819.

    [35] Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B. 2006;110(14):7238–7248.

    [36] Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B. 2003;107(3):668–677.

    [37] Szunerits S, Boukherroub R. Sensing using localized surface plasmon resonance sensors. Chem. Commun. 2012;48(72):8999–9010.

    [38] Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem. Rev. 2011;111(6):3828–3857.

    [39] Qian XM, Nie SM. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 2008;37(5):912–920.

    [40] Luther JM, Jain PK, Ewers T, Alivisatos AP. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011;10(5):361–366.

    [41] Naik GV, Shalaev VM, Boltasseva A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013;25(24):3264–3294.

    [42] Liu X, Swihart MT. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: An emerging new class of plasmonic nanomaterials. Chem. Soc. Rev. 2014;43(11):3908–3920.

    [43] Comin A, Manna L. New materials for tunable plasmonic colloidal nanocrystals. Chem. Soc. Rev. 2014;43(11):3957–3975.

    [44] Schirato A, Maiuri M, Cerullo G, Della VG. Ultrafast hot electron dynamics in plasmonic nanostructures: Experiments, modelling, design. Nanophotonics. 2023;12(1): Article 592.

    [45] Darkins R, Duffy DM. Modelling radiation effects in solids with two-temperature molecular dynamics. Comput. Mater. Sci. 2018;147:145–153.

    [46] Novotny L, Hecht B. Principles of nano-optics. Cambridge (UK): Cambridge University Press; 2012.

    [47] Muhlschlegel P, Eisler HJ, Martin OJ, Hecht B, Pohl DW. Resonant optical antennas. Science. 2005;308(5728):1607–1609.

    [48] Novotny L, Van Hulst N. Antennas for light. Nat Photonics. 2011;5:83–90.

    [49] Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010;9(3):193–204.

    [50] Chikkaraddy R, De Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016;535(7610):127–130.

    [51] Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AA, Atwater HA. Plasmonics—A route to nanoscale optical devices. Adv. Mater. 2001;13(19):1501–1505.

    [52] Liz-Marzán LM, Murphy CJ, Wang J. Nanoplasmonics. Chem. Soc. Rev. 2014;43(11):3820–3822.

    [53] Iqbal MA, Malik M, Anwar N, Bakhsh S, Javeed S, Maidin SS, Morsy K, Capangpangan RY, Alguno AC, Choi JR. Basic concepts, advances and emerging applications of nanophotonics. Arab J Chem. 2023;16(9): Article 105040.

    [54] Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010;9(3):205–213.

    [55] McFarland EW, Tang J. A photovoltaic device structure based on internal electron emission. Nature. 2003;421(6923):616–618.

    [56] Aubry A, Lei DY, Fernández-Domínguez AI, Sonnefraud Y, Maier SA, Pendry JB. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett. 2010;10(7):2574–2579.

    [57] Iqbal MA, Malik M, Shahid W, Din SZ, Anwar N, Ikram M, Idrees F. Materials for photovoltaics: Overview, generations, recent advancements and future prospects. In: Zaidi B, Shekhar C, editors. Thin films photovoltaics. London (UK); IntechOpen; 2022.

    [58] Knight MW, Sobhani H, Nordlander P, Halas NJ. Photodetection with active optical antennas. Science. 2011;332(6030):702–704.

    [59] Takahashi Y, Tatsuma T. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett. 2011;99: Article 182110.

    [60] Malik M, Iqbal MA, Choi JR, Pham PV. 2D materials for efficient photodetection: Overview, mechanisms, performance and UV-IR range applications. Frontiers. Front. Chem. 2022;10: Article 905404.

    [61] Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photonics. 2012;6:737–748.

    [62] Marinica DC, Kazansky AK, Nordlander P, Aizpurua J, Borisov AG. Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 2012;12(3):1333–1339.

    [63] Iqbal MA, Ashraf N, Shahid W, Awais M, Durrani AK, Shahzad K, Ikram M. Nanophotonics: Fundamentals, challenges, future prospects and applied applications. In: Lembrikov BI, editor. Nonlinear optics: Nonlinear nanophotonics and novel materials for nonlinear optics. London (UK): IntechOpen; 2021.

    [64] Sundararaman R, Narang P, Jermyn AS, Goddard WA III, Atwater HA. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 2014;5:5788.

    [65] Manjavacas A, Liu JG, Kulkarni V, Nordlander P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano. 2014;8(8):7630–7638.

    [66] Reddy H, Wang K, Kudyshev Z, Zhu L, Yan S, Vezzoli A, Higgins SJ, Gavini V, Boltasseva A, Reddy P, et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science. 2020;369(6502):423–426.

    [67] Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013;13(1):240–247.

    [68] Schuck PJ. Hot electrons go through the barrier. Nat. Nanotechnol. 2013;8:799–800.

    [69] Sytwu K, Vadai M, Hayee F, Angell DK, Dai A, Dixon J, Dionne JA. Driving energetically unfavorable dehydrogenation dynamics with plasmonics. Science. 2021;371(6526):280–283.

    [70] Wang F, Melosh NA. Plasmonic energy collection through hot carrier extraction. Nano Lett. 2011;11:5426–5430.

    [71] Giugni A, Torre B, Toma A, Francardi M, Malerba M, Alabastri A, Proietti Zaccaria R, Stockman MI, Di Fabrizio E. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 2013;8(11):845–852.

    [72] Li W, Coppens ZJ, Besteiro LV, Wang W, Govorov AO, Valentine J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 2015;6:8379.

    [73] Mupparapu R, Cunha J, Tantussi F, Jacassi A, Summerer L, Patrini M, Giugni A, Maserati L, Alabastri A, Garoli D, et al. High-frequency light rectification by nanoscale plasmonic conical antenna in point-contact-insulator-metal architecture. Adv Energy Mater. 2022;12(15):2103785.

    [74] Zhu Y, Xu H, Yu P, Wang Z. Engineering plasmonic hot carrier dynamics toward efficient photodetection. Appl. Phys. Rev. 2021;8(2): Article 021305.

    [75] Tagliabue G, DuChene JS, Abdellah M, Habib A, Gosztola DJ, Hattori Y, Cheng WH, Zheng K, Canton SE, Sundararaman R, et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater. 2020;19:1312–1318.

    [76] Schirato A, Maiuri M, Toma A, Fugattini S, Proietti Zaccaria R, Laporta P, Nordlander P, Cerullo G, Alabastri A, Della VG. Transient optical symmetry breaking for ultrafast broadband dichroism in plasmonic metasurfaces. Nat Photonics. 2020;14:723–727.

    [77] Nicholls LH, Rodríguez-Fortuño FJ, Nasir ME, Córdova-Castro RM, Olivier N, Wurtz GA, Zayats AV. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat Photonics. 2017;11:628–633.

    [78] Taghinejad M, Taghinejad H, Xu Z, Lee K-T, Rodrigues SP, Yan J, Adibi A, Lian T, Cai W. Ultrafast control of phase and polarization of light expedited by hot-electron transfer. Nano Lett. 2018;18(9):5544–5551.

    [79] Nicholls LH, Stefaniuk T, Nasir ME, Rodríguez-Fortuño FJ, Wurtz GA, Zayats AV. Designer photonic dynamics by using non-uniform electron temperature distribution for on-demand all-optical switching times. Nat. Commun. 2019;10(1):2967.

    [80] Wurtz GA, Pollard R, Hendren W, Wiederrecht GP, Gosztola DJ, Podolskiy VA, Zayats AV. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol. 2011;6(2):107–111.

    [81] Baffou G, Quidant R. Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 2013;7(2):171–187.

    [82] Liu JG, Zhang H, Link S, Nordlander P. Relaxation of plasmon-induced hot carriers. ACS Photonics. 2017;5(7):2584–2595.

    [83] Alabastri A, Malerba M, Calandrini E, Manjavacas A, De Angelis F, Toma A, Proietti ZR. Controlling the heat dissipation in temperature-matched plasmonic nanostructures. Nano Lett. 2017;17(9):5472–5480.

    [84] Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today. 2007;2(1):30–38.

    [85] Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA. Gold nanoparticle ensembles as heaters and actuators: Melting and collective plasmon resonances. Nanoscale Res. Lett. 2006;1(1):84–90.

    [86] Hogan NJ, Urban AS, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas NJ. Nanoparticles heat through light localization. Nano Lett. 2014;14(8):4640–4645.

    [87] Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008;41(12):1578–1586.

    [88] Jain PK. Taking the heat off of plasmonic chemistry. J. Phys. Chem. C. 2019;123(40):24347–24351.

    [89] Dongare PD, Zhao Y, Renard D, Yang J, Neumann O, Metz J, Yuan L, Alabastri A, Nordlander P, Halas NJ. A 3d plasmonic antenna-reactor for nanoscale thermal hotspots and gradients. ACS Nano. 2021;15(5):8761–8769.

    [90] Baffou G, Cichos F, Quidant R. Applications and challenges of thermoplasmonics. Nat. Mater. 2020;19(9):946–958.

    [91] Aizpurua J, Ashfold M, Baletto F, Baumberg J, Christopher P, Cortés E, De Nijs B, Fernandez YD, Gargiulo J, Gawinkowski S, et al. Dynamics of hot electron generation in metallic nanostructures: General discussion. Faraday Discuss. 2019;214:123–146.

    [92] Maier SA. Plasmonics: fundamentals and applications. New York: Springer; 2007.

    [93] Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley-VCH; 1998.

    [94] Bohren CF. How can a particle absorb more than the light incident on it? Am J Phys. 1983;51(4):323–327.

    [95] Li X, Xiao D, Zhang Z. Landau damping of quantum plasmons in metal nanostructures. New J. Phys. 2013;15(2): Article 023011.

    [96] Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008;8(11):3983–3988.

    [97] Brongersma ML, Halas NJ, Nordlander P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015;10(1):25–34.

    [98] Watanabe K, Menzel D, Nilius N, Freund HJ. Photochemistry on metal nanoparticles. Chem. Rev. 2006;106(10):4301–4320.

    [99] Lisowski M, Loukakos PA, Bovensiepen U, Stähler J, Gahl C, Wolf M. Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru (001). Appl Phys A. 2004;78:165–176.

    [100] Inouye H, Tanaka K, Tanahashi I, Hirao K. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys Rev B. 1998;57(18):11334.

    [101] Frischkorn C, Wolf M. Femtochemistry at metal surfaces: Nonadiabatic reaction dynamics. Chem. Rev. 2006;106(10):4207–4233.

    [102] Damascelli A, Lu DH, Shen KM, Armitage NP, Ronning F, Feng DL, Kim C, Shen ZX, Kimura T, Tokura Y, et al. Fermi surface, surface states, and surface reconstruction in Sr2RuO4. Phys. Rev. Lett. 2000;85(24):5194.

    [103] Dombi P, Hörl A, Rácz P, Márton I, Trügler A, Krenn JR, Hohenester U. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 2013;13(2):674–678.

    [104] Maiuri M, Garavelli M, Cerullo G. Ultrafast spectroscopy: State of the art and open challenges. J. Am. Chem. Soc. 2019;142(1):3–15.

    [105] Schriever C, Lochbrunner S, Riedle E, Nesbitt DJ. Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase. Rev. Sci. Instrum. 2008;79(1): Article 013107.

    [106] Norrish RGW, Porter G. Chemical reactions produced by very high light intensities. Nature. 1949;164:658.

    [107] Abraham H, Lemoine J. Disparition instantanée du phénomène de Kerr. CR Acad. Sci. Hebd Seances Acad. Sci. D. 1899;129:206–208.

    [108] Cerullo G, Manzoni C, Lüer L, Polli D. Time-resolved methods in biophysics. 4. Broadband pump—Probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis. Photochem. Photobiol. Sci. 2007;6(2):135–144.

    [109] Polli D, Lüer L, Cerullo G. High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics. Rev. Sci. Instrum. 2007;78(10): Article 103108.

    [110] Kovalenko SA, Dobryakov AL, Ruthmann J, Ernsting NP. Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing. Phys. Rev. A. 1999;59(3):2369.

    [111] Polli D, Brida D, Mukamel S, Lanzani G, Cerullo G. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses. Phys. Rev. A. 2010;82(5): Article 053809.

    [112] Klimov VI, Ivanov SA, Nanda J, Achermann M, Bezel I, McGuire JA, Piryatinski A. Single-exciton optical gain in semiconductor nanocrystals. Nature. 2007;447:441–446.

    [113] Wu K, Chen J, McBride JR, Lian T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science. 2015;349(6248):632–635.

    [114] Zhang J, Zhu B, Zhang L, Yu J. Femtosecond transient absorption spectroscopy investigation on electron transfer mechanism in photocatalysis. Chem. Commun. 2023;59(6):688–699.

    [115] Link S, El-Sayed MA. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 2003;54:331–366.

    [116] Su MN, Ciccarino CJ, Kumar S, Dongare PD, Hosseini Jebeli SA, Renard D, Zhang Y, Ostovar B, Chang WS, Nordlander P, et al. Ultrafast electron dynamics in single aluminum nanostructures. Nano Lett. 2019;19(5):3091–3097.

    [117] Wang Y, Wang Y, Aravind I, Cai Z, Shen L, Zhang B, Wang B, Chen J, Zhao B, Shi H, et al. In situ investigation of ultrafast dynamics of hot electron-driven photocatalysis in plasmon-resonant grating structures. J. Am. Chem. Soc. 2022;144(8):3517–3526.

    [118] Bauer E. Surface microscopy with low energy electrons. New York: Springer; 2014.

    [119] Schmidt T, Marchetto H, Lévesque PL, Groh U, Maier F, Preikszas D, Hartel P, Spehr R, Lilienkamp G, Engel W, et al. Double aberration correction in a low-energy electron microscope. Ultramicroscopy. 2010;110(11):1358–1361.

    [120] Tromp RM, Hannon JB, Ellis AW, Wan W, Berghaus A, Schaff O. A new aberration-corrected, energy-filtered LEEM/PEEM instrument I. Principles and design. Ultramicroscopy. 2010;110(7):852–861.

    [121] Veneklasen LH. The continuing development of low-energy electron microscopy for characterizing surfaces. Rev. Sci. Instrum. 1992;63:5513–5532.

    [122] Schönhense G, Elmers HJ, Nepijko SA, Schneider CM. Time-resolved photoemission electron microscopy. Adv Imaging Electron Phys. 2006;142:159–323.

    [123] Zhang X, Liu S, Tan D, Xian Y, Zhang D, Zhang Z, Liu Y, Liu X, Qiu J. Photochemically derived plasmonic semiconductor nanocrystals as an optical switch for ultrafast photonics. Chem. Mater. 2020;32(7):3180–3187.

    [124] Graham MD, Kevrekidis IG, Asakura K, Lauterbach J, Krischer K, Rotermund HH, Ertl G. Effects of boundaries on pattern formation: Catalytic oxidation of CO on platinum. Science. 1994;264(5155):80–82.

    [125] Maznev AA, Wright OB. Upholding the diffraction limit in the focusing of light and sound. Wave Motion. 2017;68:182–189.

    [126] Dabrowski MD, Dai Y, Petek H. Ultrafast photoemission electron microscopy: Imaging plasmons in space and time. Chem. Rev. 2020;120(13):6247–6287.

    [127] Petek H, Ogawa S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog Surf Sci. 1997;56(4):239–310.

    [128] Zhao D, Liu Y, Qiu J, Liu X. Plasmonic saturable absorbers. Advanced photonics. Adv Photonics Res. 2021;2(8):2100003.

    [129] Reutzel M, Li A, Gumhalter B, Petek H. Nonlinear plasmonic photoelectron response of Ag (111). Phys. Rev. Lett. 2019;123(1): Article 017404.

    [130] Podbiel D, Kahl P, Makris A, Frank B, Sindermann S, Davis TJ, Giessen H, Hoegen MH, Meyer zu Heringdorf FJ. Imaging the nonlinear plasmoemission dynamics of electrons from strong plasmonic fields. Nano Lett. 2017;17(11):6569–6574.

    [131] Bisio F, Nývlt M, Franta J, Petek H, Kirschner J. Mechanisms of high-order perturbative photoemission from Cu (001). Phys. Rev. Lett. 2006;96(8): Article 087601.

    [132] Sirotti F, Beaulieu N, Bendounan A, Silly MG, Chauvet C, Malinowski G, Fratesi G, Véniard V, Onida G. Multiphoton k-resolved photoemission from gold surface states with 800-nm femtosecond laser pulses. Phys Rev B. 2014;90(3): Article 035401.

    [133] Reutzel M, Li A, Petek H. Above-threshold multiphoton photoemission from noble metal surfaces. Phys Rev B. 2020;101(7): Article 075409.

    [134] Joly AG, El-Khoury PZ, Hess WP. Spatiotemporal imaging of surface plasmons using two-color photoemission electron microscopy. J. Phys. Chem. C. 2018;122(36):20981–20988.

    [135] Guo Q, Ji M, Yao Y, Liu M, Luo ZC, Zhang S, Liu X, Qiu J. Cu-Sn-S plasmonic semiconductor nanocrystals for ultrafast photonics. Nanoscale. 2016;8(43):18277–18281.

    [136] Ji B, Song X, Dou Y, Tao H, Gao X, Hao Z, Lin J. Two-color multiphoton emission for comprehensive reveal of ultrafast plasmonic field distribution. New J. Phys. 2018;20(7): Article 073031.

    [137] Yamagiwa K, Shibuta M, Nakajima A. Visualization of surface plasmons propagating at the buried organic/metal Interface with silver nanocluster sensitizers. ACS Nano. 2020;14(2):2044–2052.

    [138] Li Y, Liu W, Wang Y, Xue Z, Leng YC, Hu A, Yang H, Tan PH, Liu Y, Misawa H, et al. Ultrafast electron cooling and decay in monolayer WS2 revealed by time-and energy-resolved photoemission electron microscopy. Nano Lett. 2020;20(5):3747–3753.

    [139] Reutzel M, Li A, Wang Z, Petek H. Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light. Nat Commun. 2020;11(1):2230.

    [140] Wichtendahl R, Fink R, Kuhlenbeck H, Preikszas D, Rose H, Spehr R, Hartel P, Engel W, Schlögl R, Freund HJ, et al. SMART: An aberration-corrected XPEEM/LEEM with energy filter. Surf Rev Lett. 1998;5(06):1249–1256.

    [141] Locatelli A, Bauer E. Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. J. Phys. Condens. Matter. 2008;20(9): Article 093002.

    [142] Lang P, Song X, Ji B, Tao H, Dou Y, Gao X, Hao Z, Lin J. Spatial-and energy-resolved photoemission electron from plasmonic nanoparticles in multiphoton regime. Opt. Express. 2019;27(5):6878–6891.

    [143] Lehr M, Foerster B, Schmitt M, Krüger K, Sönnichsen C, Schönhense G, Elmers HJ. Momentum distribution of electrons emitted from resonantly excited individual gold nanorods. Nano Lett. 2017;17(11):6606–6612.

    [144] Cinchetti M, Gloskovskii A, Nepjiko SA, Schönhense G, Rochholz H, Kreiter M. Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys. Rev. Lett. 2005;95(4): Article 047601.

    [145] Munakata T, Sugiyama T, Masuda T, Ueno N. Photoemission microspectroscopy of occupied and unoccupied surface states of crystalline facets formed on polycrystalline copper. Phys Rev B. 2003;68(16): Article 165404.

    [146] Gliserin A, Chew SH, Choi S, Kim K, Hallinan DT Jr, Oh JW, Kim S, Kim DE. Interferometric time-and energy-resolved photoemission electron microscopy for few-femtosecond nanoplasmonic dynamics. Rev. Sci. Instrum. 2019;90(9):09390.

    [147] Fujikawa Y, Sakurai T, Tromp RM. Surface plasmon microscopy using an energy-filtered low energy electron microscope. Phys. Rev. Lett. 2008;100(12): Article 126803.

    [148] Fitzgerald JP, Word RC, Könenkamp R. Subwavelength visualization of light in thin film waveguides with photoelectrons. Phys Rev B. 2014;89(19): Article 195129.

    [149] Kahl P, Wall S, Witt C, Schneider C, Bayer D, Fischer A, Melchior P, Horn-von Hoegen M, Aeschlimann M, Meyer zu Heringdorf FJ. Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons. Plasmonics. 2014;9:1401–1407.

    [150] Gong Y, Joly AG, Hu D, El-Khoury PZ, Hess WP. Ultrafast imaging of surface plasmons propagating on a gold surface. Nano Lett. 2015;15(5):3472–3478.

    [151] Kubo A, Onda K, Petek H, Sun Z, Jung YS, Kim HK. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 2005;5(6):1123–1127.

    [152] Kubo A, Pontius N, Petek H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett. 2007;7(2):470–475.

    [153] Schmidt O, Bauer M, Wiemann C, Porath R, Scharte M, Andreyev O, Schönhense G, Aeschlimann M. Time-resolved two photon photoemission electron microscopy. Appl Phys B. 2002;74:223–227.

    [154] Zu S, Sun Q, Cao E, Oshikiri T, Misawa H. Revealing the chiroptical response of plasmonic nanostructures at the nanofemto scale. Nano Lett. 2021;21(11):4780–4786.

    [155] Yan Q, Cao E, Sun Q, Ao Y, Hu X, Shi X, Gong Q, Misawa H. Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains. Nano Lett. 2021;21(21):9270–9278.

    [156] Coccia E, Fregoni J, Guido CA, Marsili M, Pipolo S, Corni S. Hybrid theoretical models for molecular nanoplasmonics. J. Chem. Phys. 2020;153(20): Article 200901.

    [157] Dall’Osto G, Gil G, Pipolo S, Corni S. Real-time dynamics of plasmonic resonances in nanoparticles described by a boundary element method with generic dielectric function. J. Chem. Phys. 2020;158(18): Article 184114.

    [158] Schirato A, Crotti G, Gonçalves Silva M, Teles-Ferreira DC, Manzoni C, Proietti Zaccaria R, Laporta P, de Paula AM, Cerullo G, Della Valle G. Ultrafast plasmonics beyond the perturbative regime: Breaking the electronic-optical dynamics correspondence. Nano Lett. 2022;22(7):2748–2754.

    [159] Taflove A, Hagness SC, Piket-May M. Computational electromagnetics: The finite-difference time-domain method. Electr Eng Handbook. 2005;629–670.

    [160] Chen H, McMahon JM, Ratner MA, Schatz GC. Classical electrodynamics coupled to quantum mechanics for calculation of molecular optical properties: A RT-TDDFT/FDTD approach. J. Phys. Chem. C. 2010;114(34):14384–14392.

    [161] Smith HT, Karam TE, Haber LH, Lopata K. Capturing plasmon–molecule dynamics in dye monolayers on metal nanoparticles using classical electrodynamics with quantum embedding. J. Phys. Chem. C. 2017;121(31):16932–16942.

    [162] Besteiro LV, Kong XT, Wang Z, Hartland G, Govorov AO. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: Quantum and classical mechanisms. ACS Photonics. 2017;4(11):2759–2781.

    [163] Chang L, Besteiro LV, Sun J, Santiago EY, Gray SK, Wang Z, Govorov AO. Electronic structure of the plasmons in metal nanocrystals: Fundamental limitations for the energy efficiency of hot electron generation. ACS Energy Lett. 2019;4(10):2552–2568.

    [164] Santiago EY, Besteiro LV, Kong XT, Correa-Duarte MA, Wang Z, Govorov AO. Efficiency of hot-electron generation in plasmonic nanocrystals with complex shapes: Surface-induced scattering, hot spots, and interband transitions. ACS Photonics. 2020;7(10):2807–2824.

    [165] Zavelani-Rossi M, Polli D, Kochtcheev S, Baudrion AL, Béal J, Kumar V, Molotokaite E, Marangoni M, Longhi S, Cerullo G, et al. Transient optical response of a single gold nanoantenna: The role of plasmon detuning. ACS Photonics. 2015;2(4):521–529.

    [166] Ferrera M, Della Valle G, Sygletou M, Magnozzi M, Catone D, O’Keeffe P, Paladini A, Toschi F, Mattera L, Canepa M, et al. Thermometric calibration of the ultrafast relaxation dynamics in plasmonic Au nanoparticles. ACS Photonics. 2020;7(4):959–966.

    [167] Koya AN, Ji B, Hao Z, Lin J. Coherent control of gap plasmons of a complex nanosystem by shaping driving femtosecond pulses. Plasmonics. 2017;(6):1693–1699.

    [168] Dana BD, Koya AN, Song X, Lin J. Ultrafast plasmon dynamics in asymmetric gold nanodimers. Chinese Phys B. 2022;31(6): Article 064208.

    [169] Xu Y, Qin Y, Ji B, Song X, Lin J. Polarization manipulated femtosecond localized surface plasmon dephasing time in an individual bowtie structure. Opt. Express. 2020;28(7):9310–9319.

    [170] Song H, Lang P, Ji B, Song X, Lin J. Controlling the dynamics of the plasmonic field in the nano-femtosecond scale by chirped femtosecond laser pulse. Opt Mater Express. 2021;11(9):2817–2827.

    [171] Chaib AB, Zouini M, Tahiri A. Drude-Lorentz oscillators' effect on the optical response of a vanadium dioxide semiconductor. Opt. Mater. 2022;133: Article 112895.

    [172] Della Valle G, Conforti M, Longhi S, Cerullo G, Brida D. Real-time optical mapping of the dynamics of nonthermal electrons in thin gold films. Phys Rev B. 2012;86(15): Article 155139.

    [173] O'Keeffe P, Catone D, Di Mario L, Toschi F, Magnozzi M, Bisio F, Alabastri A, Proietti Zaccaria R, Toma A, Della Valle G, et al. Disentangling the temporal dynamics of nonthermal electrons in photoexcited gold nanostructures. Laser Photonics Rev. 2021;15(6):2100017.

    [174] Narang P, Sundararaman R, Atwater HA. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics. 2016;5(1):96–111.

    [175] Sun CK, Vallée F, Acioli LH, Ippen EP, Fujimoto JG. Femtosecond-tunable measurement of electron thermalization in gold. Phys Rev B Condens Matter. 1994;50(20):15337–15348.

    [176] Zhang Y. Theory of plasmonic hot-carrier generation and relaxation. J. Phys. Chem. A. 2021;125(41):9201–9208.

    [177] Kulkarni V, Prodan E, Nordlander P. Quantum plasmonics: Optical properties of a nanomatryushka. Nano Lett. 2013;13(12):5873–5879.

    [178] Tanaka S, Yoshida T, Watanabe K, Matsumoto Y, Yasuike T, Novko D, Petrović M, Kralj M. Ultrafast plasmonic response ensured by atomic scale confinement. ACS Photonics. 2022;9(3):837–845.

    [179] Crai A, Pusch A, Reiter DE, Castellanos LR, Kuhn T, Hess O. Coulomb effects on the photoexcited quantum dynamics of electrons in a plasmonic nanosphere. Phys Rev B. 2018;98(16): Article 165411.

    [180] Saavedra JR, Asenjo-Garcia A, García de Abajo FJ. Hot-electron dynamics and thermalization in small metallic nanoparticles. ACS Photonics. 2016;3(9):1637–1646.

    [181] Govorov AO, Zhang H, Gun’ko YK. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C. 2013;117(32):16616–16631.

    [182] Kong XT, Wang Z, Govorov AO. Plasmonic nanostars with hot spots for efficient generation of hot electrons under solar illumination. Adv Opt. Mater. 2017;5(15).

    [183] Zhang H, Govorov AO. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. J. Phys. Chem. C. 2014;118(14):7606–7614.

    [184] Zubizarreta X, Chulkov EV, Chernov IP, Vasenko AS, Aldazabal I, Silkin VM. Quantum-size effects in the loss function of Pb (111) thin films: An ab initio study. Phys Rev B. 2017;95(23): Article 235405.

    [185] Bernardi M, Mustafa J, Neaton JB, Louie SG. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 2015;6(1):7044.

    [186] Douglas-Gallardo OA, Berdakin M, Frauenheim T, Sánchez CG. Plasmon-induced hot-carrier generation differences in gold and silver nanoclusters. Nanoscale. 2019;11(17):8604–8615.

    [187] Iqbal MA, Ashraf N, Shahid W, Afzal D, Idrees F, Ahmad R. Fundamentals of density functional theory: Recent developments, challenges and future horizons. In: Glossman-Mitnik D, editor. Density functional theory: Recent advances, new perspectives and applications. London (UK); IntechOpen; 2021.

    [188] Libisch F, Huang C, Carter EA. Embedded correlated wavefunction schemes: Theory and applications. Acc. Chem. Res. 2014;47(9):2768–2775.

    [189] Martirez JM, Bao JL, Carter EA. First-principles insights into plasmon-induced catalysis. Annu Rev Phys Chem. 2021;72:99–119.

    [190] Chu W, Saidi WA, Prezhdo OV. Long-lived hot electron in a metallic particle for plasmonics and catalysis: Ab initio nonadiabatic molecular dynamics with machine learning. ACS Nano. 2020;14(8):10608–10615.

    [191] Yin H, Zhang H, Cheng XL. Plasmon resonances and the plasmon-induced field enhancement in nanoring dimers. J. Appl. Phys. 2013;113(11): Article 113107.

    [192] Berdakin M, Soldano G, Bonafé FP, Liubov V, Aradi B, Frauenheim T, Sánchez CG. Dynamical evolution of the Schottky barrier as a determinant contribution to electron–hole pair stabilization and photocatalysis of plasmon-induced hot carriers. Nanoscale. 2022;14(7):2816–2825.

    [193] Conley KM, Nayyar N, Rossi TP, Kuisma M, Turkowski V, Puska MJ, Rahman TS. Plasmon excitations in mixed metallic nanoarrays. ACS Nano. 2019;13(5):5344–5355.

    [194] Kuda-Singappulige GU, Lingerfelt DB, Li X, Aikens CM. Ultrafast nonlinear plasmon decay processes in silver nanoclusters. J. Phys. Chem. C. 2020;124(37):20477–20487.

    [195] Mikhailov IA, Belfield KD, Masunov AE. DFT-based methods in the design of two-photon operated molecular switches. J. Phys. Chem. A. 2009;113(25):7080–7089.

    [196] Yan L, Guan M, Meng S. Plasmon-induced nonlinear response of silver atomic chains. Nanoscale. 2018;10(18):8600–8605.

    [197] Kuda-Singappulige GU, Aikens CM. Excited-state absorption in silver nanoclusters. J. Phys. Chem. C. 2021;125(45):24996–25006.

    [198] Rossi TP, Erhart P, Kuisma M. Hot-carrier generation in plasmonic nanoparticles: The importance of atomic structure. ACS Nano. 2020;14(8):9963–9971.

    [199] Brown AM, Sundararaman R, Narang P, Goddard WA III, Atwater HA. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano. 2016;10(1):957–966.

    [200] Brown AM, Sundararaman R, Narang P, Schwartzberg AM, Goddard WA III, Atwater HA. Experimental and ab initio ultrafast carrier dynamics in plasmonic nanoparticles. Phys. Rev. Lett. 2017;118(8): Article 087401.

    [201] Stefanucci G, Van Leeuwen R. Nonequilibrium many-body theory of quantum systems: A modern introduction. Cambridge (UK): Cambridge University Press; 2013.

    [202] Xu J, Peng Y, Qian S, Jiang L. Microstructured all-optical switching based on two-dimensional material. Coatings. 2023;13(5):876.

    [203] Chai Z, Hu X, Zhu Y, Sun S, Yang H, Gong Q. Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity. Adv Opt Mater. 2014;2(4):320–325.

    [204] Chai Z, Hu X, Wang F, Niu X, Xie J, Gong Q. Ultrafast all-optical switching. Adv Opt Mater. 2017;5(7):1600665.

    [205] Hira T, Homma T, Uchiyama T, Kuwamura K, Kihara Y, Saiki T. All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium. Appl. Phys. Lett. 2015;106(3): Article 031105.

    [206] Zhang J, Zhang X. Ultrafast plasmon polaritons doubly resonant on a single silver nanoshell. Opt. Express. 2019;27(12):17061–17068.

    [207] Zhang M, Large N, Koh AL, Cao Y, Manjavacas A, Sinclair R, Nordlander P, Wang SX. High-density 2D homo-and hetero-plasmonic dimers with universal sub-10-nm gaps. ACS Nano. 2015;9(9):9331–9339.

    [208] Mayer M, Scarabelli L, March K, Altantzis T, Tebbe M, Kociak M, Bals S, García de Abajo FJ, Fery A, Liz-Marzán LM. Controlled living nanowire growth: Precise control over the morphology and optical properties of AgAuAg bimetallic nanowires. Nano Lett. 2015;15(8):5427–5437.

    [209] Liu X. Colloidal plasmonic nanoparticles for ultrafast optical switching and laser pulse generation. Front Mater. 2018;25:59.

    [210] Ren M, Jia B, Ou JY, Plum E, Zhang J, MacDonald KF, Nikolaenko AE, Xu J, Gu M, Zheludev NI. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 2011;23(46):5540–5544.

    [211] Dhama R, Panahpour A, Pihlava T, Ghindani D, Caglayan H. All-optical switching based on plasmon-induced enhancement of index of refraction. Nat. Commun. 2022;13(1):3114.

    [212] Kumar N, Rúa A, Aldama J, Echeverría K, Fernández FE, Lysenko S. Photoinduced surface plasmon switching at VO2/Au interface. Opt. Express. 2018;26(11):13773–13782.

    [213] Cun P, Wang M, Huang C, Huang P, He X, Wei Z, Zhang X. Conductive connection induced speed-up of localized-surface-plasmon dynamics. J Opt. 2017;20(1): Article 014011.

    [214] Zhang J, Zhang X. Bimetallic network with hetero-interfacial plasmons. Adv. Mater. Interfaces. 2018;5(15):1800580.

    [215] Kuttruff J, Garoli D, Allerbeck J, Krahne R, De Luca A, Brida D, Caligiuri V, Maccaferri N. Ultrafast all-optical switching enabled by epsilon-near-zero-tailored absorption in metal-insulator nanocavities. Commun Phys. 2020;3:114.

    [216] Jerominek H, Picard F, Vincent D. Vanadium oxide films for optical switching and detection. Opt Eng. 1993;32(9):2092–2099.

    [217] Jiang H, Zhao Y, Ma H, Wu Y, Chen M, Wang M, Zhang W, Peng Y, Leng Y, Cao Z, et al. Broad-band ultrafast all-optical switching based on enhanced nonlinear absorption in corrugated indium tin oxide films. ACS Nano. 2022;16(8):12878–12888.

    [218] Paternò GM, Iseppon C, D’Altri A, Fasanotti C, Merati G, Randi M, Desii A, Pogna EA, Viola D, Cerullo G, et al. Solution processable and optically switchable 1D photonic structures. Sci. Rep. 2018;8: Article 3517.

    [219] Guo P, Schaller RD, Ocola LE, Diroll BT, Ketterson JB, Chang RP. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum. Nat. Commun. 2016;7:12892.

    [220] Diroll BT, Schramke KS, Guo P, Kortshagen UR, Schaller RD. Ultrafast silicon photonics with visible to mid-infrared pumping of silicon nanocrystals. Nano Lett. 2017;17(10):6409–6414.

    [221] Lemasters R, Shcherbakov MR, Yang G, Song J, Lian T, Harutyunyan H, Shvets G. Deep optical switching on subpicosecond timescales in an amorphous Ge metamaterial. Adv Opt Mater. 2021;9(15):2100240.

    [222] Iyer PP, Pendharkar M, Palmstrøm CJ, Schuller JA. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates. Nat. Commun. 2017;8(1):472.

    [223] Lau KY, Yang Y, Zhao D, Liu X, Qiu J. Tunable optical nonlinearity of indium tin oxide for optical switching in epsilon-near-zero region. Nanophotonics. 2022;11(18):4209–4219.

    [224] Abb M, Albella P, Aizpurua J, Muskens OL. All-optical control of a single plasmonic nanoantenna–ITO hybrid. Nano Lett. 2011;11(6):2457–2463.

    [225] Diroll BT, Guo P, Chang RP, Schaller RD. Large transient optical modulation of epsilon-near-zero colloidal nanocrystals. ACS Nano. 2016;10(11):10099–10105.

    [226] Kinsey N, DeVault C, Kim J, Ferrera M, Shalaev VM, Boltasseva A. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica. 2015;2(7):616–622.

    [227] Alam MZ, De Leon I, Boyd RW. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science. 2016;352(6287):795–797.

    [228] Alam MZ, Schulz SA, Upham J, De Leon I, Boyd RW. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat Photonics. 2018;12:79–83.

    [229] Bohn J, Luk TS, Tollerton C, Hutchings SW, Brener I, Horsley S, Barnes WL, Hendry E. All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide. Nature Commun. 2021;12(1):1017.

    [230] Yang J, Zhang X. Optical fiber delivered ultrafast plasmonic optical switch. Adv. Sci. 2021;8(10):2100280.

    [231] Chen J, Li Z, Yue S, Gong Q. Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit. Nano Lett. 2011;11(7):2933–2937.

    [232] Wang Y, Zhang X, Fang X. Ultrafast optical heating induced polarization-dependent optical switching in gold nanowires. Appl Sci. 2017;7(1):46.

    [233] Dai H, Zhang L, Wang Z, Wang X, Zhang J, Gong H, Han JB, Han Y. Linear and nonlinear optical properties of silver-coated gold nanorods. J. Phys. Chem. C. 2017;121(22):12358–12364.

    [234] Yang Y, Zhao D, Wang L, Wang W, Liu X, Qiu J. Photon manipulation of two-dimensional plasmons in metal oxide Nanosheets for surface-enhanced spectroscopy and ultrafast optical switching. Chem. Mater. 2022;34(6):2804–2812.

    [235] Zasedatelev AV, Baranikov AV, Urbonas D, Scafirimuto F, Scherf U, Stöferle T, Mahrt RF, Lagoudakis PG. A room-temperature organic polariton transistor. Nat Photonics. 2019;13(6):378–383.

    [236] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics. 2020;14:37–43.

    [237] Du W, Zhao J, Zhao W, Zhang S, Xu H, Xiong Q. Ultrafast modulation of exciton–plasmon coupling in a monolayer WS2–Ag nanodisk hybrid system. ACS Photonics. 2019;6(11):2832–2840.

    [238] Basiri A, Rafique MZ, Bai J, Choi S, Yao Y. Ultrafast low-pump fluence all-optical modulation based on graphene-metal hybrid metasurfaces. Light Sci Appl. 2022;11:102.

    [239] Ooi KJ, Cheng JL, Sipe JE, Ang LK, Tan DT. Ultrafast, broadband, and configurable midinfrared all-optical switching in nonlinear graphene plasmonic waveguides. APL Photonics. 2016;1(4): Article 046101.

    [240] Yang WX, Chen AX, Huang Z, Lee RK. Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems. Opt. Express. 2015;23(10):13032–13040.

    [241] Wang H, Wang HY, Bozzola A, Toma A, Panaro S, Raja W, Alabastri A, Wang L, Chen QD, Xu HL, et al. Dynamics of strong coupling between J-aggregates and surface plasmon polaritons in subwavelength hole arrays. Adv. Funct. Mater. 2016;26(34):6198–6205.

    [242] Lu H, Liu X, Wang L, Gong Y, Mao D. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express. 2011;19(4):2910–2915.

    [243] Guo Q, Yao Y, Luo ZC, Qin Z, Xie G, Liu M, Kang J, Zhang S, Bi G, Liu X, et al. Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals. ACS Nano. 2016;10(10):9463–9469.

    [244] Liu Z, Mu H, Xiao S, Wang R, Wang Z, Wang W, Wang Y, Zhu X, Lu K, Zhang H, et al. Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals. Adv. Mater. 2016;28(18):3535–3542.

    [245] Litchinitser NM. Nonlinear optics in metamaterials. Adv Phys X. 2018;3(1):1367628.

    [246] Xian Y, Cai Y, Sun X, Liu X, Guo Q, Zhang Z, Tong L, Qiu J. Refractory plasmonic metal nitride nanoparticles for broadband near-infrared optical switches. Laser Photonics Rev. 2019;13(6):1900029.

    [247] Xiao QH, Feng XY, Yang W, Lin YK, Peng QQ, Jiang SZ, Liu J, Su LB. Epsilon-near-zero indium tin oxide nanocolumns array as a saturable absorber for a Nd: BGO laser. Laser Phys. 2020;30(5): Article 055802.

    [248] Feng X, Liu J, Yang W, Yu X, Jiang S, Ning T, Liu J. Broadband indium tin oxide nanowire arrays as saturable absorbers for solid-state lasers. Opt. Express. 2020;28(2):1554–1560.

    [249] Zhang Z, Liu J, Hao Q, Liu J. Sensitive saturable absorber and optical switch of epsilon-near-zero medium. Appl Phys Express. 2019;12(6): Article 065504.

    [250] Wang W, Yue W, Liu Z, Shi T, Du J, Leng Y, Wei R, Ye Y, Liu C, Liu X, et al. Ultrafast nonlinear optical response in plasmonic 2D molybdenum oxide nanosheets for mode-locked pulse generation. Adv Opt Mater. 2018;6(17):1700948.

    [251] Feist A, Huang G, Arend G, Yang Y, Henke J-W, Raja AS, Kappert FJ, Wang RN, Lourenço-Martins H, Qiu Z, et al. Cavity-mediated electron-photon pairs. Science. 2022;377(6607):777–780.

    [252] Garoli D, Mosconi D, Miele E, Maccaferri N, Ardini M, Giovannini G, Dipalo M, Agnoli S, De Angelis F. Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes. Nanoscale. 2018;10(36):17105–17111.

    [253] Logunov SL, Ahmadi TS, El-Sayed MA, Khoury JT, Whetten RL. Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J. Phys. Chem. B. 1997;101(19):3713–3719.

    Muhammad Aamir Iqbal, Wang Lin, Wang Pengyun, Jianrong Qiu, Xiaofeng Liu. Ultrafast Plasmonics for All-Optical Switching and Pulsed Lasers[J]. Ultrafast Science, 2024, 4(1): 0048
    Download Citation