• Spacecraft Recovery & Remote Sensing
  • Vol. 45, Issue 6, 113 (2024)
Yong LIU, Weili YANG, Pengyu GUO, Lu CAO, Xinhui WANG, Ling MENG, and Weidong ZHAO
Author Affiliations
  • National Innovation Institute of Defense Technology, Academy of Military Sciences, Beijing 100071, China
  • show less
    DOI: 10.3969/j.issn.1009-8518.2024.06.010 Cite this Article
    Yong LIU, Weili YANG, Pengyu GUO, Lu CAO, Xinhui WANG, Ling MENG, Weidong ZHAO. Landcover Classification Method for Multispectral Satellite Remote Sensing Imagery Based on Improved YOLOv5[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(6): 113 Copy Citation Text show less
    References

    [1] Q Q YUAN, H F SHEN, T W LI et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. Remote Sensing of Environment, 241, 111716(2020).

    [2] E R LUNDBLAD, D J WRIGHT, J MILLER et al. A Benthic Terrain Classification Scheme for American Samoa. Marine Geodesy, 29, 89-111(2006).

    [3] V SOOD, H S GUSAIN, S GUPTA et al. Detection of Snow/Ice Cover Changes Using Subpixel-Based Change Detection Approach over Chhota-Shigri Glacier, Western Himalaya, India. Quaternary International, 575, 204-212(2021).

    [4] M J SONG, D CIVCO. Road Extraction Using SVM and Image Segmentation. Photogrammetric Engineering & Remote Sensing, 70, 1365-1371(2004).

    [5] SCHROFF F, CRIMINISI A, ZISSERMAN A. Object Class Segmentation Using Rom Fests[C]British Machine Vision Conference. [S.l.]: BMVC, 2008: 110. DOI: 10.5244C.22.54.

    [6] S TALUKDAR, P SINGHA, S MAHATO et al. Land-use Land-cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sensing, 12, 1135(2020).

    [7] A VALI, S COMAI, M MATTEUCCI. Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Remote Sensing, 12, 2495(2020).

    [8] RONNEBERGER O, FISCHER P, BROX T. U: Convolutional wks f Biomedical Image Segmentation[C]Medical Image Computing ComputerAssisted Intervention–MICCAI 2015, October 59, 2015, Munich, Germany. Cham: Springer International Publishing, 2015: 234241. DOI: 10.10079783319245744_28.

    [9] ZHAO H S, SHI J P, QI X J, et al. Pyra Scene Parsing wk[C]2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR), July 2126, 2017, Honolulu, HI, USA. Piscataway, NJ: IEEE, 2017: 62306239. DOI: 10.1109CVPR.2017.660.

    [10] CHEN L C, ZHU Yukun, PAPREOU G, et al. EncoderDecoder with Atrous Separable Convolution f Semantic Image Segmentation[C]Computer Vision–ECCV 2018, September 8–14, 2018, Munich, Germany. Cham: Springer International Publishing, 2018: 833851. DOI: 10.10079783030012342_49.

    [11] RAKHLIN A, DAVYDOW A, NIKOLENKO S. L Cover Classification from Satellite Imagery with u LovászSoftmax Loss[C]2018 IEEECVF Conference on Computer Vision Pattern Recognition Wkshops (CVPRW), June 1822, 2018, Salt Lake City, UT, USA. Piscataway, NJ: IEEE, 2018: 262266. DOI: 10.1109CVPRW.2018.00048.

    [12] BERMAN M, TRIKI AR, BLHKO MB. The LovaszSoftmax Loss: A Tractable Surrogate f the Optimization of the IntersectionOverUnion Measure in Neural wks[C]2018 IEEECVF Conference on Computer Vision Pattern Recognitionm, June 1823, 2018, Salt Lake City, UT, USA. Piscataway, NJ: IEEE, 2018: 44134421. DOI: 10.1109CVPR.2018.00464.

    [13] KUO T S, TSENG K S, YAN J W, et al. Deep Aggregation f L Cover Classification[C]2018 IEEECVF Conference on Computer Vision Pattern Recognition Wkshops (CVPRW), June 1822, 2018, Salt Lake City, UT, USA. Piscataway, NJ: IEEE, 2018: 252256. DOI: 10.1109CVPRW.2018.00046.

    [14] X YUAN, Z CHEN, N CHEN et al. Land Cover Classification Based on the PSPNet and Superpixel Segmentation Methods with High Spatial Resolution Multispectral Remote Sensing Imagery. Journal of Applied Remote Sensing, 15, 034511-034511(2021).

    [15] Z Q DU, Y LIANG. Object Detection of Remote Sensing Image Based on Multi-Scale Feature Fusion and Attention Mechanism. IEEE Access, 12, 8619-8632(2024).

    [16] K M HE, X Y ZHANG, S Q REN et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).

    [17] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature Pyra wks f Object Detection[C]2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR), July 2126, 2017, Honolulu, HI, USA. Piscataway, NJ: IEEE, 2017: 936944. DOI: 10.1109CVPR.2017.106.

    [18] LIU S, QI L, QIN H F, et al. Path Aggregation wk f Instance Segmentation[C]2018 IEEECVF Conference on Computer Vision Pattern Recognition, June 1823, 2018, Salt Lake City, UT, USA. Piscataway, NJ: IEEE, 2018: 87598768. DOI: 10.1109CVPR.2018.00913.

    [19] SNELL J, SWERSKY K, ZEMEL R. Prototypical wks f FewShot Learning[C]Proceedings of the 31st International Conference on Neural Infmation Processing Systems. December 04, 2017, Long Beach, Califnia, USA. Red Hook, NY, USA: Curran Associates Inc., 2017: 40804090. DOI: 10.55553294996.3295163.

    [20] T HOSPEDALES, A ANTONIOU, P MICAELLI et al. Meta-learning in Neural Networks: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 5149-5169(2022).

    [21] X Y TONG, G S XIA, Q K LU et al. Land-cover Classification with High-resolution Remote Sensing Images Using Transferable Deep Models. Remote Sensing of Environment, 237, 111322(2020).

    Yong LIU, Weili YANG, Pengyu GUO, Lu CAO, Xinhui WANG, Ling MENG, Weidong ZHAO. Landcover Classification Method for Multispectral Satellite Remote Sensing Imagery Based on Improved YOLOv5[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(6): 113
    Download Citation