• Advanced Photonics Nexus
  • Vol. 3, Issue 4, 046002 (2024)
Xiaohan Liu1, Kun Huang1、2、3、*, Wen Zhang1, Ben Sun1, Jianan Fang1, Yan Liang4, and Heping Zeng1、2、5、6
Author Affiliations
  • 1East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai, China
  • 2Chongqing Institute of East China Normal University, Chongqing Key Laboratory of Precision Optics, Chongqing, China
  • 3Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
  • 4University of Shanghai for Science and Technology, School of Optical Electrical and Computer Engineering, Shanghai, China
  • 5Shanghai Research Center for Quantum Sciences, Shanghai, China
  • 6Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
  • show less
    DOI: 10.1117/1.APN.3.4.046002 Cite this Article Set citation alerts
    Xiaohan Liu, Kun Huang, Wen Zhang, Ben Sun, Jianan Fang, Yan Liang, Heping Zeng, "Highly sensitive mid-infrared upconversion detection based on external-cavity pump enhancement," Adv. Photon. Nexus 3, 046002 (2024) Copy Citation Text show less
    References

    [1] K. L. Vodopyanov. Laser-Based Mid-Infrared Sources and Applications(2020).

    [2] M. Razeghi, B. M. Nguyen. Advances in mid-infrared detection and imaging: a key issues review. Rep. Prog. Phys., 77, 082401(2014).

    [3] R. H. Hadfield et al. Single-photon detection for long-range imaging and sensing. Optica, 10, 1124-1141(2023).

    [4] S. D. Russo et al. Advances in mid-infrared single-photon detection. Photonics, 9, 470(2022).

    [5] Y. Fang et al. Mid-infrared photonics using 2D materials: status and challenges. Laser Photonics Rev., 14, 1900098(2020).

    [6] G. G. Taylor et al. Low-noise single-photon counting superconducting nanowire detectors at infrared wavelengths up to 29  μm. Optica, 10, 1672-1678(2023). https://doi.org/10.1364/OPTICA.509337

    [7] Y. Pan et al. Mid-infrared Nb4N3-based superconducting nanowire single photon detectors for wavelengths up to 10  μm. Opt. Express, 30, 40044-40052(2022). https://doi.org/10.1364/OE.472378

    [8] Q. Chen et al. Mid-infrared single photon detector with superconductor Mo0.8Si0.2 nanowire. Sci. Bull., 66, 965-968(2021). https://doi.org/10.1016/j.scib.2021.02.024

    [9] P. Wang et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers. Small, 15, 1904396(2019).

    [10] J. Wu et al. Emerging low-dimensional materials for mid-infrared detection. Nano Res., 14, 1863-1877(2021).

    [11] X. Xue et al. High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction. Light Sci. Appl., 12, 2(2023).

    [12] A. Xomalis et al. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science, 374, 1268-1271(2021).

    [13] W. Chen et al. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science, 374, 1264-1267(2021).

    [14] A. Barh et al. Parametric upconversion imaging and its applications. Adv. Opt. Photonics, 11, 952-1019(2019).

    [15] K. Huang et al. Wide-field mid-infrared single-photon upconversion imaging. Nat. Commun., 13, 1077(2022).

    [16] X. Zeng et al. Tunable mid-infrared detail-enhanced imaging with micron-level spatial resolution and photon-number resolving sensitivity. Laser Photonics Rev., 17, 2200446(2023).

    [17] S. K. Liao et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photonics, 11, 509-513(2017).

    [18] N. M. Israelsen et al. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci. Appl., 8, 11(2019).

    [19] S. Junaid et al. Video-rate, mid-infrared hyperspectral upconversion imaging. Optica, 6, 702-708(2019).

    [20] Y. Zhao et al. High-speed scanless entire bandwidth mid-infrared chemical imaging. Nat. Commun., 14, 3929(2023).

    [21] J. Fang et al. Wide-field mid-infrared hyperspectral imaging beyond video rate. Nat. Commun., 15, 1811(2024).

    [22] S. Wolf et al. Self-gated mid-infrared short pulse upconversion detection for gas sensing. Opt. Express, 25, 24459-24468(2017).

    [23] A. S. Ashik et al. Mid-infrared upconversion imaging using femtosecond pulses. Photonics Res., 7, 783-791(2019).

    [24] P. Rehain et al. Noise-tolerant single photon sensitive three-dimensional imager. Nat. Commun., 11, 921(2020).

    [25] K. Huang et al. Mid-infrared photon counting and resolving via efficient frequency upconversion. Photonics Res., 9, 259-265(2021).

    [26] J. Fang et al. Mid-infrared single-photon 3D imaging. Light Sci. Appl., 12, 144(2023).

    [27] T. Zheng et al. High-speed mid-infrared single-photon upconversion spectrometer. Laser Photonics Rev., 17, 2300149(2023).

    [28] B. Sun et al. Single-photon time-stretch infrared spectroscopy. Laser Photonics Rev., 18, 2301272(2024).

    [29] R. Demur et al. High sensitivity narrowband wavelength mid-infrared detection at room temperature. Opt. Lett., 42, 2006-2009(2017).

    [30] Y. Li et al. Ultra-sensitive mid-wavelength-infrared upconversion detector. Opt. Laser Technol., 168, 109993(2024).

    [31] Z. Ge et al. Midinfrared up-conversion imaging under different illumination conditions. Phy. Rev. Appl., 20, 054060(2023).

    [32] T. W. Neely et al. Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide. Opt. Lett., 37, 4332-4334(2012).

    [33] K. D. F. Büchter et al. All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared. Opt. Lett., 34, 470-472(2009).

    [34] M. F. Witinski, J. B. Paul, J. G. Anderson. Pump-enhanced difference-frequency generation at 3.3 μm. Appl. Opt., 48, 2600-2606(2009).

    [35] K. Huang et al. Observation of spectral mode splitting in a pump-enhanced ring cavity for mid-infrared generation. Opt. Express, 27, 11766-11775(2019).

    [36] J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. Room-temperature mid-infrared single-photon spectral imaging. Nat. Photonics, 6, 788-793(2012).

    [37] N. Huang et al. Femtowatt incoherent image conversion from mid-infrared light to near-infrared light. Laser Phys., 27, 035401(2017).

    [38] W. Yue et al. Eye-safe aerosol and cloud lidar based on free-space intracavity upconversion detection. Remote Sens., 14, 2934(2022).

    [39] M. Widarsson et al. Room temperature photon-counting lidar at 3 μm. Appl. Opt., 61, 884-889(2022).

    [40] R. L. Pedersen et al. Characterization of the NEP of mid-infrared upconversion detectors. IEEE Photonics Technol. Lett., 31, 681-684(2019).

    [41] M. A. Albota, N. C. W. Franco. Efficient single-photon counting at 1.55 μm by means of frequency upconversion. Opt. Lett., 29, 1449-1451(2004).

    [42] S. Wolf et al. Upconversion-enabled array spectrometer for the mid-infrared, featuring kilohertz spectra acquisition rates. Opt. Express, 25, 14504-14515(2017).

    [43] S. Fu et al. Review of recent progress on single-frequency fiber lasers. J. Opt. Soc. Am. B, 34, A49-A62(2017).

    [44] L. Neuhaus et al. PyRPL (Python Red Pitaya Lockbox)—an open-source software package for FPGA-controlled quantum optics experiments(2017).

    [45] A. Barh et al. Upconversion spectral response tailoring using fanout QPM structures. Opt. lett., 44, 2847-2850(2019).

    [46] S. M. M. Friis, L. Høgstedt. Upconversion-based mid-infrared spectrometer using intra-cavity LiNbO3 crystals with chirped poling structure. Opt. lett., 44, 4231-4234(2019).

    [47] M. Mrejen et al. Multicolor time-resolved upconversion imaging by adiabatic sum frequency conversion. Laser Photonics Rev., 14, 2000040(2020).

    [48] P. Liu et al. Large dynamic range and wideband mid-infrared upconversion detection with BaGa4Se7 crystal. Optica, 9, 50-55(2022). https://doi.org/10.1364/OPTICA.442772

    [49] P. J. Rodrigo et al. Room-temperature, high-SNR upconversion spectrometer in the 612  μm region. Laser Photonics Rev., 15, 2000443(2021). https://doi.org/10.1002/lpor.202000443

    Xiaohan Liu, Kun Huang, Wen Zhang, Ben Sun, Jianan Fang, Yan Liang, Heping Zeng, "Highly sensitive mid-infrared upconversion detection based on external-cavity pump enhancement," Adv. Photon. Nexus 3, 046002 (2024)
    Download Citation