• Journal of Semiconductors
  • Vol. 45, Issue 4, 042501 (2024)
Nuo Xu, Gaoqiang Deng*, Haotian Ma, Shixu Yang, Yunfei Niu, Jiaqi Yu, Yusen Wang, Jingkai Zhao, and Yuantao Zhang**
Author Affiliations
  • State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • show less
    DOI: 10.1088/1674-4926/45/4/042501 Cite this Article
    Nuo Xu, Gaoqiang Deng, Haotian Ma, Shixu Yang, Yunfei Niu, Jiaqi Yu, Yusen Wang, Jingkai Zhao, Yuantao Zhang. Effect of annealing on the electrical performance of N-polarity GaN Schottky barrier diodes[J]. Journal of Semiconductors, 2024, 45(4): 042501 Copy Citation Text show less
    References

    [1] M H Wong, S Rajan, R M Chu et al. N-face high electron mobility transistors with a GaN-spacer. Phys Status Solidi A, 204, 2049(2007).

    [2] S Mohanty, K Khan, E Ahmadi. N-polar GaN: Epitaxy, properties, and device applications. Prog Quant Electron, 87, 100450(2023).

    [3] U K Mishra, J Singh. Semiconductor device physics and design. New York: Springer-Verlag, 1, 1(2008).

    [4] M H Wong, S Keller, N S Dasgupta et al. N-polar GaN epitaxy and high electron mobility transistors. Semicond Sci Technol, 28, 074009(2013).

    [5] J Lu, X Zheng, M Guidry et al. Engineering the (In, Al, Ga)N back-barrier to achieve high channel-conductivity for extremely scaled channel-thicknesses in N-polar GaN high-electron-mobility-transistors. Appl Phys Lett, 104, 092107(2014).

    [6] S Diez, S Mohanty, C Kurdak et al. Record high electron mobility and low sheet resistance on scaled-channel N-polar GaN/AlN heterostructures grown on on-axis N-polar GaN substrates by plasma-assisted molecular beam epitaxy. Appl Phys Lett, 117, 042102(2020).

    [7] M H Wong, Y Pei, T Palacios et al. Low nonalloyed Ohmic contact resistance to nitride high electron mobility transistors using N-face growth. Appl Phys Lett, 91, 232103(2007).

    [8] S Rajan, A Chini, M H Wong et al. N-polar GaN/AlGaN/GaN high electron mobility transistors. J Appl Phys, 102, 044501(2007).

    [9] D F Brown, A Williams, K Shinohara et al. W-band power performance of AlGaN/GaN DHFETs with regrown n GaN ohmic contacts by MBE. International Electron Devices Meeting, 19.3. 1(2011).

    [10] B Romanczyk, S Wienecke, M Guidry et al. Demonstration of constant 8 W/mm power density at 10, 30, and 94 GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs. IEEE Trans Electron Devices, 65, 45(2018).

    [11] Y Liu, M Z Kauser, M I Nathan et al. Effects of hydrostatic and uniaxial stress on the Schottky barrier heights of Ga-polarity and N-polarity n-GaN. Appl Phys Lett, 84, 2112(2004).

    [12] B P Downey, D J Meyer, D S Katzer et al. Electrical characterization of Schottky contacts to N-polar GaN. Solid State Electron, 86, 17(2013).

    [13] T Suemitsu, I Makabe. Effective Schottky barrier height model for N-polar and Ga-polar GaN by polarization-induced surface charges with finite thickness. Phys Status Solidi B, 257, 1900528(2020).

    [14] T Aoki, T Tanikawa, R Katayama et al. Electrical characteristics of N-polar (0001¯) p-type GaN Schottky contacts. Jpn J Appl Phys, 55, 04EJ09(2016).

    [15] H W Jang, J H Lee, J L Lee. Characterization of band bendings on Ga-face and N-face GaN films grown by metalorganic chemical-vapor deposition. Appl Phys Lett, 80, 3955(2002).

    [16] Q Sun, Y S Cho, I H Lee et al. Nitrogen-polar GaN growth evolution on c-plane sapphire. Appl Phys Lett, 93, 131912(2008).

    [17] N A Fichtenbaum, T E Mates, S Keller et al. Impurity incorporation in heteroepitaxial N-face and Ga-face GaN films grown by metalorganic chemical vapor deposition. J Cryst Growth, 310, 1124(2008).

    [18] D Khachariya, D Szymanski, M H Breckenridge et al. On the characteristics of N-polar GaN Schottky barrier contacts with LPCVD SiN interlayers. Appl Phys Lett, 118, 122103(2021).

    [19] D Khachariya, D Szymanski, P Reddy et al. Schottky contacts to N-polar GaN with SiN interlayer for elevated temperature operation. Appl Phys Lett, 120, 172109(2022).

    [20] K Kim. Improved conduction in GaN Schottky junctions with HfO2 passivation layers through post-deposition annealing. Jpn J Appl Phys, 59, 030902(2020).

    [21] H M Ng, N G Weimann, A Chowdhury. GaN nanotip Pyramids formed by anisotropic etching. J Appl Phys, 94, 650(2003).

    [22] G Q Deng, Y T Zhang, Z Huang et al. Growth of high quality N-polar n-GaN on vicinal C-face n-SiC substrates for vertical conducting devices. Vacuum, 130, 119(2016).

    [23] Y Wang, Y F Niu, J Q Yu et al. Growth of high-quality nitrogen-polar GaN film by two-step high-temperature method. Thin Solid Films, 752, 139246(2022).

    [24] N N K Reddy, V R Reddy, C J Choi. Electrical characteristics and interfacial reactions of rapidly annealed Pt/Ru Schottky contacts on n-type GaN. Phys Status Solidi A, 208, 1670(2011).

    [25] C H Chen, S M Baier, D K Arch et al. A new and simple model for GaAs heterojunction FET gate characteristics. IEEE Trans Electron Devices, 35, 570(1988).

    [26] M Drechsler, D M Hofmann, B K Meyer et al. Determination of the conduction band electron effective mass in hexagonal GaN. Jpn J Appl Phys, 34, L1178(1995).

    [27] D Qiao, L S Yu, S S Lau et al. Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction. J Appl Phys, 87, 801(2000).

    [28] E H Rhoderick, R H Williams. Metal-semiconductor contacts. 2nd ed. Claredon Press, 1, 1(1988).

    [29] H Woo, J Lee, Y Jo et al. Barrier lowering and leakage current reduction in Ni-AlGaN/GaN Schottky diodes with an oxygen-treated GaN cap layer. Curr Appl Phys, 15, 1027(2015).

    [30] J W Jeon, S H Park, S Y Jung et al. Electrical characteristics of V/Ti/Au contacts to Ga-polar and N-polar n-GaN prepared by different methods. Electrochem Solid-State Lett, 13, H125(2010).

    [31] T Zhang, Y Wang, Y N Zhang et al. Comprehensive annealing effects on AlGaN/GaN Schottky barrier diodes with different work-function metals. IEEE Trans Electron Devices, 68, 2661(2021).

    [32] H C Card, E H Rhoderick. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J Phys D:Appl Phys, 4, 1589(1971).

    [33] G Nagaraju, K Ravindranatha Reddy, V Rajagopal Reddy. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures. J Semicond, 38, 114001(2017).

    [34] I Jyothi, V Janardhanam, Y R Lim et al. Effect of copper phthalocyanine (CuPc) interlayer on the electrical characteristics of Au/n-GaN Schottky rectifier. Mater Sci Semicond Process, 30, 420(2015).

    [35] R T Tung. Electron transport of inhomogeneous Schottky barriers. Appl Phys Lett, 58, 2821(1991).

    [36] D P Han, S Ishimoto, R Mano et al. Improved reverse leakage current in GaInN-based LEDs with a sputtered AlN buffer layer. IEEE Photonics Technol Lett, 31, 1971(2019).

    [37] Q S Wang, J Chen, H J Tang et al. Anomalous capacitance in temperature and frequency characteristics of a TiW/p-InP Schottky barrier diode. Semicond Sci Technol, 31, 065023(2016).

    [38] C Dong, X X Han, J A Li et al. Impacts of growth orientation and N incorporation on the interface-states and the electrical characteristics of Cu/GaAsN Schottky barrier diodes. Phys B, 527, 52(2017).

    [39] S Turuvekere, N Karumuri, A A Rahman et al. Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and modeling. IEEE Trans Electron Devices, 60, 3157(2013).

    Nuo Xu, Gaoqiang Deng, Haotian Ma, Shixu Yang, Yunfei Niu, Jiaqi Yu, Yusen Wang, Jingkai Zhao, Yuantao Zhang. Effect of annealing on the electrical performance of N-polarity GaN Schottky barrier diodes[J]. Journal of Semiconductors, 2024, 45(4): 042501
    Download Citation