• Opto-Electronic Engineering
  • Vol. 51, Issue 10, 240164 (2024)
Guangsheng Deng1、2, Aoran Guo2, Xinqi Cheng2, Jun Yang1、2, and Fei Cai1、*
Author Affiliations
  • 1Special Display and Imaging Technology Innovation Center of Anhui Province,Academy of Opto-Electronic Technology,Hefei University of Technology,Hefei,Anhui 230009,China
  • 2Anhui Province Key Laboratory of Measuring Theory and Precision Instrument,School of Instrument Science and Optoelectronics Engineering,Hefei University of Technology,Hefei,Anhui 230009,China
  • show less
    DOI: 10.12086/oee.2024.240164 Cite this Article
    Guangsheng Deng, Aoran Guo, Xinqi Cheng, Jun Yang, Fei Cai. Dual-layer 3D terahertz metamaterial based multifunctional sensor[J]. Opto-Electronic Engineering, 2024, 51(10): 240164 Copy Citation Text show less
    References

    [1] R A Shelby, D R Smith, S Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [2] Q Zhu, H W Tian, W X Jiang. Manipulations and applications of radiating waves using electromagnetic metasurfaces. Opto-Electron Eng, 50, 230115(2023).

    [3] M A Baqir, P K Choudhury. Hyperbolic metamaterial-based optical biosensor for detecting cancer cells. IEEE Photonics Technol Lett, 35, 183-186(2023).

    [4] C W Ma, W Y Ma, Y Tan et al. High Q-factor terahertz metamaterial based on analog of electromagnetically induced transparency and its sensing characteristics. Opto-Electron Eng, 45, 180298(2018).

    [5] W D Hu, X Du, S Y Liu et al. Optofluidic refractometric sensor based on quasi-bound states in the continuum in all-dielectric metasurface. Opto-Electron Eng, 50, 230124(2023).

    [6] T Q Hu, T S Pan, D J Guo et al. Omnidirectional configuration of stretchable strain sensor enabled by the strain engineering with chiral Auxetic metamaterial. ACS Nano, 17, 22035-22045(2023).

    [7] X X Du, H P Mao, Y T Yan et al. Study on the spectral characteristics of plant growth regulators based on the structure difference of terahertz metamaterial sensor. IEEE Sensors J, 22, 14065-14074(2022).

    [8] S Banerjee, P Dutta, S Basu et al. A new design of a terahertz metamaterial absorber for gas sensing applications. Symmetry, 15, 24(2023).

    [9] A S Saadeldin, M F O Hameed, E M A Elkaramany et al. Highly sensitive terahertz metamaterial sensor. IEEE Sensors J, 19, 7993-7999(2019).

    [10] J F Federici, B Schulkin, F Huang et al. THz imaging and sensing for security applications - explosives,weapons and drugs. Semicond Sci Technol, 20, S266-S280(2005).

    [11] Z R Li, M Zhong, L Y Zang et al. Dual-mode metamaterial absorber for independent sweat and temperature sensing. J Electron Mater, 52, 4106-4116(2023).

    [12] T L Cocker, V Jelic, R Hillenbrand et al. Nanoscale terahertz scanning probe microscopy. Nat Photonics, 15, 558-569(2021).

    [13] Z H He, L Q Li, H Q Ma et al. Graphene-based metasurface sensing applications in terahertz band. Results Phys, 21, 103795(2021).

    [14] A Ahmadivand, B Gerislioglu, R Ahuja et al. Terahertz plasmonics: the rise of toroidal metadevices towards immunobiosensings. Mater Today, 32, 108-130(2020).

    [15] W J Wang, K X Sun, Y Xue et al. A review of terahertz metamaterial sensors and their applications. Opt Commun, 556, 130266(2024).

    [16] A Vivek, K Shambavi, Z C Alex. A review: metamaterial sensors for material characterization. Sens Rev, 39, 417-432(2019).

    [17] X X Deng, Y C Shen, B W Liu et al. Terahertz metamaterial sensor for sensitive detection of citrate salt solutions. Biosensors (Basel), 12, 408(2022).

    [18] J Li, Y D Zhou, F W Peng et al. High-FOM temperature sensing based on Hg-EIT-like liquid metamaterial unit. Nanomaterials, 12, 1395(2022).

    [19] X Y Tian, L X Yin, D C Li. Current situation and trend of fabrication technologies for three-dimensional metamaterials. Opto-Electron Eng, 44, 69-76(2017).

    [20] Y P Zhang, T T Li, B B Zeng et al. A graphene based tunable terahertz sensor with double Fano resonances. Nanoscale, 7, 12682-12688(2015).

    [21] X Wang, J L Wang. Terahertz metamaterial absorber sensor based on three-dimensional split-ring resonator array and microfluidic channel. Acta Opt Sin, 40, 1904001(2020).

    [22] Y P Fu, X C Xu, Y S Lin. Actively programmable MEMS-based racetrack-shaped terahertz metamaterial. J Appl Phys, 131, 115301(2022).

    [23] Y S Lin, S Q Liao, X Y Liu et al. Tunable terahertz metamaterial by using three-dimensional double split-ring resonators. Opt Laser Technol, 112, 215-221(2019).

    [24] A H M Almawgani, J Surve, T Parmar et al. A graphene-metasurface-inspired optical sensor for the heavy metals detection for efficient and rapid water treatment. Photonics, 10, 56(2023).

    [25] J Yang, L M Qi, B Li et al. A terahertz metamaterial sensor used for distinguishing glucose concentration. Results Phys, 26, 104332(2021).

    [26] G S Deng, A R Guo, Z F Kou et al. High-sensitivity terahertz sensor for liquid medium detection using dual-layer metasurfaces. IEEE Trans Terahertz Sci Technol, 14, 57-63(2024).

    [27] A R Guo, Z F Kou, J Yang et al. Electromagnetic anapole-inspired micro-displacement sensor using dual-layer terahertz metasurfaces with micrometer-level sensitivity and centimeter-level range. IEEE Trans Instrum Meas, 73, 6006709(2024).

    Guangsheng Deng, Aoran Guo, Xinqi Cheng, Jun Yang, Fei Cai. Dual-layer 3D terahertz metamaterial based multifunctional sensor[J]. Opto-Electronic Engineering, 2024, 51(10): 240164
    Download Citation