• Photonics Research
  • Vol. 13, Issue 2, 286 (2025)
Longxing Su1、2、*, Bingheng Meng3, Heng Li2, Zhuo Yu2, Yuan Zhu2、5, and Rui Chen4、6
Author Affiliations
  • 1International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China
  • 2School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
  • 3State Key Laboratory of High Power Semiconductor Laser, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
  • 4Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 5e-mail: zhuy3@sustech.edu.cn
  • 6e-mail: chenr@sustech.edu.cn
  • show less
    DOI: 10.1364/PRJ.539352 Cite this Article Set citation alerts
    Longxing Su, Bingheng Meng, Heng Li, Zhuo Yu, Yuan Zhu, Rui Chen, "Amplified spontaneous emission and photoresponse characteristics in highly defect tolerant CsPbClxBr3−x crystal," Photonics Res. 13, 286 (2025) Copy Citation Text show less
    References

    [1] X. B. Wang, X. Y. Zhang, H. Liu. Self-assembling nanoarchitectonics of low dimensional semiconductors for circularly polarized luminescence. J. Materiomics, 9, 683-700(2023).

    [2] Y. L. Lia, H. X. Sun, Z. Lia. Electrospun perovskite nano-network for flexible, near-room temperature, environmentally friendly and ultrastable light regulation. J. Mater. Sci. Technol., 130, 35-43(2022).

    [3] M. V. Kovalenko, L. Protesescu, M. I. Bodnarchuk. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 358, 745-750(2017).

    [4] C. Y. Wu, Y. X. Le, L. Y. Liang. Non-ultrawide bandgap CsPbBr3 nanosheet for sensitive deep ultraviolet photodetection. J. Mater. Sci. Technol., 159, 251-257(2023).

    [5] X. X. He, P. Liu, H. H. Zhang. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater., 29, 1604510(2017).

    [6] B. Liu, Y. Q. Wang, Y. J. Wu. Novel broad spectral response perovskite solar cells: a review of the current status and advanced strategies for breaking the theoretical limit efficiency. J. Mater. Sci. Technol., 140, 33-57(2023).

    [7] Q. A. Akkerman, V. D’Innocenzo, S. Accornero. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc., 137, 10276-10281(2015).

    [8] Y. P. Huang, Z. W. Lai, J. W. Jin. Ultrasensitive temperature sensing based on ligand-free alloyed CsPbClxBr3−x perovskite nanocrystals confined in hollow mesoporous silica with high density of halide vacancies. Small, 17, 2103425(2021).

    [9] J. M. Pina, D. H. Parmar, G. Bappi. Deep-blue perovskite single-mode lasing through efficient vapor-assisted chlorination. Adv. Mater., 33, 2006697(2021).

    [10] L. X. Su. Room temperature amplified spontaneous emissions in a sub-centimeter sized CsPbBr3 bulk single crystal. Opt. Express, 31, 39020-39029(2023).

    [11] S. M. H. Qaid, H. M. Ghaithan, B. A. Al-Asbahi. Tuning of amplified spontaneous emission wavelength for green and blue light emission through the tunable composition of CsPb(Br1−xClx)3 inorganic perovskite quantum dots. J. Phys. Chem. C, 125, 9441-9452(2021).

    [12] H. H. Zhang, J. N. Yao, H. B. Fu. Patterning rainbow like amplified spontaneous emission arrays for full-color CsPbX3 quantum dot film displays. Chem. Mater., 32, 9602-9608(2020).

    [13] N. Liu, H. Y. Luo, X. Y. Wei. Linearly manipulating color emission via anion exchange technology for high performance amplified spontaneous emission of perovskites. Adv. Mater., 36, 2308672(2024).

    [14] D. Kim, H. Ryu, S. Y. Lim. On the origin of room-temperature amplified spontaneous emission in CsPbBr3 single crystals. Chem. Mater., 33, 7185-7193(2021).

    [15] C. Y. Zhao, W. M. Tian, J. X. Liu. Stable two-photon pumped amplified spontaneous emission from millimeter-sized CsPbBr3 single crystals. J. Phys. Chem. Lett., 10, 2357-2362(2019).

    [16] L. X. Su, T. F. Li, Y. Zhu. A vertical CsPbBr3/ZnO heterojunction for photo-sensing lights from UV to green band. Opt. Express, 30, 23330-23340(2022).

    [17] C. Fu, Z.-Y. Li, J. Wang. A simple-structured perovskite wavelength sensor for full-color imaging. Nano Lett., 23, 533-540(2023).

    [18] Y. Li, Z. F. Shi, L. Z. Lei. Highly stable perovskite photodetector based on vapor-processed micrometer-scale CsPbBr3 microplatelets. Chem. Mater., 30, 6744-6755(2018).

    [19] J. Z. Song, Q. Z. Cui, J. H. Li. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible-infrared dual-modal photodetectors. Adv. Opt. Mater., 5, 1700157(2017).

    [20] Y. Zhang, S. Y. Li, W. Yang. Millimeter-sized single-crystal CsPbBr3/CuI heterojunction for high-performance self-powered photodetector. J. Phys. Chem. Lett., 10, 2400-2407(2019).

    [21] F. M. Guo, J. Wang, Y. Li. Postripening fabrication and self-driven narrowband photoresponse of large-grain, phase-pure CsPbBr3 films. Sol. RRL, 6, 2200828(2022).

    [22] H. R. Sun, L. X. Su, Q. Zeng. Kilogram-scale high-yield production of PbI2 microcrystals for optimized photodetectors. J. Mater. Chem. C, 12, 6433-6442(2024).

    [23] S. Mahato, M. T. Szwajkowska, S. Singh. Surface-engineered methylammonium lead bromide single crystals: a platform for fluorescent security tags and photodetector applications. Adv. Opt. Mater., 12, 2302257(2024).

    [24] M. L. Liao, B. B. Shan, M. Li. In situ Raman spectroscopic studies of thermal stability of all-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals. J. Phys. Chem. Lett., 10, 1217-1225(2019).

    [25] D. M. Calistru, L. Mihut, S. Lefrant. Identification of the symmetry of phonon modes in CsPbCl3 in phase IV by Raman and resonance-Raman scattering. J. Appl. Phys., 82, 5391-5395(1997).

    [26] L. X. Su. Room temperature growth of CsPbBr3 single crystal for asymmetric MSM structure photodetector. J. Mater. Sci. Technol., 187, 113-122(2024).

    [27] L. X. Su. Growth of a sub-centimeter-sized CsPbBr3 bulk single crystal using an anti-solvent precipitation method. Symmetry, 16, 332(2024).

    [28] L. X. Su, Y. Zhang, J. Xie. All-inorganic CsPbBr3/GaN hetero-structure for near UV to green band photodetector. J. Mater. Chem. C, 10, 1349-1356(2022).

    [29] M. Baranowski, P. Plochocka, R. Su. Exciton binding energy and effective mass of CsPbCl3: a magneto-optical study. Photon. Res., 8, A50-A55(2020).

    [30] F. Xu, H. M. Wei, Y. Q. Wu. Nonmonotonic temperature-dependent bandgap change of CsPbCl3 films induced by optical phonon scattering. J. Lumin., 257, 119736(2023).

    [31] J. B. Gong, H. X. Zhong, C. Gao. Pressure-induced indirect-direct bandgap transition of CsPbBr3 single crystal and its effect on photoluminescence quantum yield. Adv. Sci., 9, 2201554(2022).

    [32] B. Wu, H. F. Yuan, Q. Xu. Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites. Nat. Commun., 10, 484(2019).

    [33] S. Jin, Y. L. Zheng, A. Z. Li. Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures. J. Appl. Phys., 82, 3870-3873(1997).

    [34] D. E. Cooper, J. Bajaj, P. R. Newmann. Photoluminescence spectroscopy of excitons for evaluation of high-quality CdTe crystals. J. Cryst. Growth, 86, 544-551(1988).

    [35] Z. C. Feng, A. Mascarenhas, W. J. Choyke. Low temperature photoluminescence spectra of (001) CdTe films grown by molecular beam epitaxy at different substrate temperatures. J. Lumin., 35, 329-341(1986).

    [36] L. Bergman, X. B. Chen, J. L. Morrison. Photoluminescence dynamics in ensembles of wide-band-gap nanocrystallites and powders. J. Appl. Phys., 96, 675-682(2004).

    [37] H. P. He, H. P. Tang, Z. Z. Ye. Temperature-dependent photoluminescence of quasialigned Al-doped ZnO nanorods. Appl. Phys. Lett., 90, 023104(2007).

    [38] C. X. Shan, Z. Liu, S. K. Hark. Temperature dependent photoluminescence study on phosphorus doped ZnO nanowires. Appl. Phys. Lett., 92, 073103(2008).

    [39] S. H. Yu, J. Xu, X. Y. Shang. Unusual temperature dependence of bandgap in 2D inorganic lead-halide perovskite nanoplatelets. Adv. Sci., 8, 2100084(2021).

    [40] K. Mukhuti, A. Mandal, B. Roy. Carrier thermalization and zero-point bandgap renormalization in halide perovskites from the Urbach tails of the emission spectrum. Appl. Phys. Lett., 121, 182104(2022).

    [41] S. Bose, S. Shendre, Z. G. Song. Temperature-dependent optoelectronic properties of quasi-2D colloidal cadmium selenide nanoplatelets. Nanoscale, 9, 6595-6605(2017).

    [42] R. Chen, Q.-L. Ye, T. C. He. Uniaxial tensile strain and exciton–phonon coupling in bent ZnO nanowires. Appl. Phys. Lett., 98, 241916(2011).

    [43] A. J. Fischer, W. Shan, J. J. Song. Temperature-dependent absorption measurements of excitons in GaN epilayers. Appl. Phys. Lett., 71, 1981-1983(1997).

    [44] B. T. Diroll, G. Nedelcu, M. V. Kovalenko. High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals. Adv. Funct. Mater., 27, 1606750(2017).

    [45] J. Li, X. Yuan, P. Jing. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Adv., 6, 78311-78316(2016).

    [46] M. I. Dar, G. Jacopin, S. Meloni. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci. Adv., 2, e1601156(2016).

    [47] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 34, 149-154(1967).

    [48] J. Bardeen, W. Shockley. Deformation potentials and mobilities in non-polar crystals. Phys. Rev., 80, 72-80(1950).

    [49] H. Y. Fan. Temperature dependence of the energy gap in monatomic semiconductors. Phys. Rev., 78, 808-809(1950).

    [50] B. Liu, R. Chen, X. L. Xu. Exciton-related photoluminescence and lasing in CdS nanobelts. J. Phys. Chem. C, 115, 12826(2011).

    [51] Y. Q. Shi, R. X. Li, G. X. Yin. Laser-induced secondary crystallization of CsPbBr3 perovskite film for robust and low threshold amplified spontaneous emission. Adv. Funct. Mater., 32, 2207206(2022).

    [52] J. Kang, L. W. Wang. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett., 8, 489-493(2017).

    [53] D. P. Nenon, K. Pressler, J. Kang. Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases. J. Am. Chem. Soc., 140, 17760-17772(2018).

    [54] G. H. Ahmed, J. K. El-Demellawi, J. Yin. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Lett., 3, 2301-2307(2018).

    [55] D. Kim, H. Ryu, S. Y. Lim. On the origin of room-temperature amplified spontaneous emission in CsPbBr3 single crystals. Chem. Mater., 33, 7185-7193(2021).

    [56] M. B. Price, J. Butkus, T. C. Jellicoe. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites. Nat. Commun., 6, 8420(2015).

    [57] S. Cheng, Q. Chang, Z. Wang. Observation of net stimulated emission in CsPbBr3 thin films prepared by pulsed laser deposition. Adv. Opt. Mater., 9, 2100564(2021).

    [58] Y. Wang, M. Zhi, Y.-Q. Chang. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett., 18, 4976-4984(2018).

    [59] A. Balena, A. Perulli, M. Fernandez. Temperature dependence of the amplified spontaneous emission from CsPbBr3 nanocrystal thin films. J. Phys. Chem. C, 122, 5813-5819(2018).

    [60] H. L. Zhang, L. Yuan, Y. Chen. Amplified spontaneous emission and random lasing using CsPbBr3 quantum dot glass through controlling crystallization. Chem. Commun., 56, 2853(2020).

    [61] H. J. He, E. Ma, X. Y. Chen. Single crystal perovskite microplate for high-order multiphoton excitation. Small Methods, 3, 1900396(2019).

    [62] W. Yang, Y. Zhang, Y. J. Zhang. Transparent Schottky photodiode based on AgNi NWs/SrTiO3 contact with an ultrafast photoresponse to short-wavelength blue light and UV-shielding effect. Adv. Funct. Mater., 29, 1905923(2019).

    [63] L. X. Su, Y. Q. Zuo, J. Xie. Scalable manufacture of vertical p-GaN/n-SnO2 heterostructure for self-powered ultraviolet photodetector, solar cell and dual-color light emitting diode. InfoMat, 3, 598(2021).

    [64] K. W. Liu, J. G. Ma, J. Y. Zhang. Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film. Solid State Electron., 51, 757-761(2007).

    [65] H. J. Zhang, X. Liu, J. P. Dong. Centimeter-sized inorganic lead halide perovskite CsPbBr3 crystals grown by an improved solution method. Cryst. Growth Des., 17, 6426-6431(2017).

    [66] S. J. Cheng, H. Z. Zhong. What happens when halide perovskites meet with water?. J. Phys. Chem. Lett., 13, 2281-2290(2022).

    [67] Y. Zou, W. J. Yu, H. Q. Guo. A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air. Science, 385, 161-167(2024).

    Longxing Su, Bingheng Meng, Heng Li, Zhuo Yu, Yuan Zhu, Rui Chen, "Amplified spontaneous emission and photoresponse characteristics in highly defect tolerant CsPbClxBr3−x crystal," Photonics Res. 13, 286 (2025)
    Download Citation