[1] 宋健超, 张雷, 马维光, 等. NIRS-XRF联用的煤炭发热量高稳定检测[J]. 光学 精密工程, 2023, 31(13): 1880-1889. doi: 10.37188/OPE.20233113.1880SONGJ C, ZHANGL, MAW G, et al. Highly stable analysis of coal calorific value using combined NIRS-XRF[J]. Opt. Precision Eng., 2023, 31(13): 1880-1889.(in Chinese). doi: 10.37188/OPE.20233113.1880
[2] X H WANG, G Q GUO, Q X B et al. Determining the temperature of aluminum plasma produced by laser‐induced breakdown spectroscopy based on its ultraviolet emission spectra. Microwave and Optical Technology Letters, 65, 1229-1234(2022).
[3] S SHETA, M S AFGAN, Z Y HOU et al. Coal analysis by laser-induced breakdown spectroscopy: a tutorial review. Journal of Analytical Atomic Spectrometry, 34, 1047-1082(2019).
[4] M GAFT, I SAPIR-SOFER, H MODIANO et al. Laser induced breakdown spectroscopy for bulk minerals online analyses. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 1496-1503(2007).
[5] M GAFT, E DVIR, H MODIANO et al. Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1177-1182(2008).
[6] C E ROMERO, R DE SARO, J CRAPARO et al. Laser-induced breakdown spectroscopy for coal characterization and assessing slagging propensity. Energy & Fuels, 24, 510-517(2010).
[7] CE ROMERO, Z YAO, R DE SARO et al. Development and Demonstration of Laser-induced breakdown spectroscopy for in-situ, on-line coal analysis, 912-915(2011).
[8] C E ROMERO, R D SARO. LIBS Analysis for Coal(2019).
[9] D K OTTESEN, J C F WANG, L J RADZIEMSKI. Real-time laser spark spectroscopy of particulates in combustion environments. Applied Spectroscopy, 43, 967-976(1989).
[10] D K OTTESEN, L L BAXTER, L J RADZIEMSKI et al. Laser spark emission spectroscopy for in-situ, real-time monitoring of pulverized coal particle composition. Energy & Fuels, 5, 304-312(1991).
[11] H L C MEUZELAAR. Advances in coal spectroscopy(1992).
[12] JA MOULIJN, KA NATER, HA CHERMIN. 1987 International conference on coal science : proceedings of the 1987 international conference on coal science, Maastricht, The Netherlands. Neurocomputing, 71, 26-30(1987).
[13] L G BLEVINS, C R SHADDIX, S M SICKAFOOSE et al. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces. Applied Optics, 42, 6107-6118(2003).
[14] K L DENG, J T WU, Z WANG et al. Online compositional analysis in coal gasification environment using laser-induced plasma technology, 6314, 230-237(2006).
[15] M KURIHARA, K IKEDA, Y IZAWA et al. Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy. Applied Optics, 42, 6159-6165(2003).
[16] C B STIPE, A L MILLER, J BROWN et al. Evaluation of laser-induced breakdown spectroscopy (LIBS) for measurement of silica on filter samples of coal dust. Applied Spectroscopy, 66, 1286-1293(2012).
[17] 陈翊翔. 基于激光诱导击穿光谱技术的煤粉颗粒流检测及方法优化[D]. 广州:华南理工大学, 2022. doi: 10.1039/d2ja00023gCHENY X. Study on Analysis Method Optimization of Coal Particle Flow Based on Laser Induced Breakdown Spectroscopy[D]. Guangzhou: South China University of Technology, 2022. (in Chinese). doi: 10.1039/d2ja00023g
[18] T CTVRTNICKOVA, M P MATEO, A YAÑEZ et al. Application of LIBS and TMA for the determination of combustion predictive indices of coals and coal blends. Applied Surface Science, 257, 5447-5451(2011).
[19] 陈世和, 陆继东, 张博, 等. 激光诱导击穿光谱法测量煤粉流的控制因素[J]. 光学 精密工程, 2013, 21(7): 1651. doi: 10.3788/ope.20132107.1651CHENS H, LUJ D, ZHANGB, et al. Controllable factors in detection of pulverized coal flow with LIBS[J]. Opt. Precision Eng., 2013, 21(7): 1651.(in Chinese). doi: 10.3788/ope.20132107.1651
[20] D REDOGLIO, E GOLINELLI, S MUSAZZI et al. A large depth of field LIBS measuring system for elemental analysis of moving samples of raw coal. Spectrochimica Acta, 116, 46-50(2016).
[21] F J WALLIS, B L CHADWICK, R J S MORRISON. Analysis of lignite using laser-induced breakdown spectroscopy. Applied Spectroscopy, 54, 1231-1235(2000).
[22] D BODY, B L CHADWICK. Simultaneous elemental analysis system using laser induced breakdown spectroscopy. Review of Scientific Instruments, 72, 1625-1629(2001).
[23] D BODY, B L CHADWICK. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 725-736(2001).
[24] B L CHADWICK, D BODY. Development and commercial evaluation of laser-induced breakdown spectroscopy chemical analysis technology in the coal power generation industry. Applied Spectroscopy, 56, 70-74(2002).
[25] M NODA, Y DEGUCHI, S IWASAKI et al. Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 701-709(2002).
[26] W B YIN, L ZHANG, L DONG et al. Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants. Applied Spectroscopy, 63, 865-872(2009).
[27] L ZHANG, Y GONG, Y F LI et al. Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 113, 167-173(2015).