• Optics and Precision Engineering
  • Vol. 32, Issue 8, 1186 (2024)
Jinhui ZUO1、2, Wenbin XU1、3, Shijie ZHOU4, Daobin SHENG5, Xiangdong XU7, Zhengqiang LI1、*, Yinghui HAN6, Chunjiang WU4, and Lei ZHANG5
Author Affiliations
  • 1State Environmental Protection Key Laboratory of Satellite Remote Sensing & State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing000, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • 3Science and Technology on Optical Radiation Laboratory, Beijing Institute of Environmental Characteristics, Beijing100854, China
  • 4School of Information and Software Engineering, University of Electronic Science and Technology , Chengdu610000, China
  • 5Jiangsu Ancline Technology Co, Nantong226000, China
  • 6College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
  • 7Sichuan Yifang Intelligent Technology Co, Chengdu610054, China
  • show less
    DOI: 10.37188/OPE.20243208.1186 Cite this Article
    Jinhui ZUO, Wenbin XU, Shijie ZHOU, Daobin SHENG, Xiangdong XU, Zhengqiang LI, Yinghui HAN, Chunjiang WU, Lei ZHANG. Gas leakage detection based on spatiotemporal information of low contrast infrared images[J]. Optics and Precision Engineering, 2024, 32(8): 1186 Copy Citation Text show less
    References

    [1] X L CHEN, W D LIN, C X LIU et al. An integrated EDIB model for probabilistic risk analysis of natural gas pipeline leakage accidents. Journal of Loss Prevention in the Process Industries, 83, 105027(2023).

    [2] Q DENG, K WANG, J H WU et al. An integrated model for evaluating the leakage risk of urban gas pipe: a case study based on Chinese real accident data. Natural Hazards, 116, 319-340(2023).

    [3] 魏琪, 李杰, 邱选兵, 等. 基于近红外图像处理的便携式干眼诊断仪研究[J]. 红外技术, 2023, 45(2): 217-222.WEIQ, LIJ, QIUX B, et al. Portable dry eye diagnosis instrument using near-infrared image procession[J]. Infrared Technology, 2023, 45(2): 217-222.(in Chinese)

    [4] J F WANG, L P TCHAPMI, A P RAVIKUMARA et al. Machine Vision for Natural Gas Methane Emissions Detection Using an Infrared Camera. arXiv, 1904-08500(2019). http://arxiv.org/abs/1904.08500

    [5] D D DAI, X P WANG, Y ZHANG et al. Leakage region detection of gas insulated equipment by applying infrared image processing technique, 94-98(2017).

    [6] Z Z TU, B LUO, Y J SHI et al. A new method for SF6 gas leakage detection, 31-34(2010).

    [7] B L LIU, H C MA, X P ZHENG et al. Monitoring and detection of combustible gas leakage by using infrared imaging, 1-6(2018).

    [8] Q LU, Q LI, L K HU et al. An effective low-contrast SF₆ gas leakage detection method for infrared imaging. IEEE Transactions on Instrumentation and Measurement, 70, 5009009(2021).

    [9] 蔺丽华, 吴冬梅, 李杰, 等. 基于混合高斯背景模型的SF6泄漏自动检测[J]. 西北大学学报(自然科学版), 2014, 44(3): 379-382.LINL H, WUD M, LIJ, et al. Automatic SF6 leakage detection based on Gaussian mixture background model[J]. Journal of Northwest University (Natural Science Edition), 2014, 44(3): 379-382.(in Chinese)

    [10] 翁静, 袁盼, 王铭赫, 等. 基于支持向量机的泄漏气体云团热成像检测方法[J]. 光学学报, 2022, 42(9): 0911002. doi: 10.3788/AOS202242.0911002WENGJ, YUANP, WANGM H, et al. Thermal imaging detection method of leak gas clouds based on support vector machine[J]. Acta Optica Sinica, 2022, 42(9): 0911002.(in Chinese). doi: 10.3788/AOS202242.0911002

    [11] A BUADES, B COLL, J M MOREL. A non-local algorithm for image denoising, 60-65(2005).

    [12] H Q WANG, J S SHI, H P ZHANG et al. Research on infrared sequence image denoising based on multi-frame averaging and improved bilateral filtering, 94-101(10).

    [13] H T YANG, Y N TONG, Z Q CAO et al. Infrared image enhancement algorithm based on improved wavelet threshold function and weighted guided filtering. Journal of Physics: Conference Series, 2525(2023).

    [14] D S LEE. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 827-832(2005).

    [15] H WU, G Z LIU. A dynamic infrared object tracking algorithm by frame differencing. Infrared Physics and Technology, 127, 104384(2022).

    [16] J H ZUO, X L HU, L R XU et al. CH4 gas leakage detection method for low contrast infrared images. Infrared Physics & Technology, 127, 104473(2022).

    [17] D ZIMMERLE, T VAUGHN, C BELL et al. Detection limits of optical gas imaging for natural gas leak detection in realistic controlled conditions. Environmental Science & Technology, 54, 11506-11514(2020).

    [18] Q CHEN, L F BAI, B M ZHANG. Real-time adaptive noise processing in low light level images, 606-609(1996).

    [19] 朱文杰, 王广龙, 田杰, 等. 空时自适应混合高斯模型复杂背景运动目标检测[J]. 北京理工大学学报, 2018, 38(2): 165-172.ZHUW J, WANGG L, TIANJ, et al. Spatio-temporal adaptive mixture of Gaussians for moving objects detection in complex background scenes[J]. Transactions of Beijing Institute of Technology, 2018, 38(2): 165-172.(in Chinese)

    [20] Q ZHAO, X X NIE, D LUO et al. An effective method for gas-leak area detection and gas identification with mid-infrared image. Photonics, 9, 992(2022).

    [21] J C BEZDEK, R EHRLICH, W FULL. FCM: the fuzzy c-means clustering algorithm. Computers and Geosciences, 10, 191-203(1984).

    [22] T LEI, X H JIA, Y N ZHANG et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Transactions on Fuzzy Systems, 26, 3027-3041(2018).

    [23] O ARBELAITZ, I GURRUTXAGA, J MUGUERZA et al. An extensive comparative study of cluster validity indices. Pattern Recognition, 46, 243-256(2013).

    [24] A SOBRAL, T BOUWMANS. BGS Library: a Library Framework for Algorithm's Evaluation in Foreground/Background Segmentation(2014).

    [25] L MADDALENA, A PETROSINO. A self-organizing approach to background subtraction for visual surveillance applications. IEEE Transactions on Image Processing, 17, 1168-1177(2008).

    [26] 王琦, 潘夏童, 邢明玮, 等. 被动式红外成像气体目标智能检测算法及量化研究进展[J]. 控制与决策, 2023, 38(8): 2265-2282.WANGQ, PANX T, XINGM W, et al. A survey of automatic gas leakage detection and quantiflcation based on passive infrared imaging[J]. Control and Decision, 2023, 38(8): 2265-2282.(in Chinese)

    Jinhui ZUO, Wenbin XU, Shijie ZHOU, Daobin SHENG, Xiangdong XU, Zhengqiang LI, Yinghui HAN, Chunjiang WU, Lei ZHANG. Gas leakage detection based on spatiotemporal information of low contrast infrared images[J]. Optics and Precision Engineering, 2024, 32(8): 1186
    Download Citation