[1] X L CHEN, W D LIN, C X LIU et al. An integrated EDIB model for probabilistic risk analysis of natural gas pipeline leakage accidents. Journal of Loss Prevention in the Process Industries, 83, 105027(2023).
[2] Q DENG, K WANG, J H WU et al. An integrated model for evaluating the leakage risk of urban gas pipe: a case study based on Chinese real accident data. Natural Hazards, 116, 319-340(2023).
[3] 魏琪, 李杰, 邱选兵, 等. 基于近红外图像处理的便携式干眼诊断仪研究[J]. 红外技术, 2023, 45(2): 217-222.WEIQ, LIJ, QIUX B, et al. Portable dry eye diagnosis instrument using near-infrared image procession[J]. Infrared Technology, 2023, 45(2): 217-222.(in Chinese)
[5] D D DAI, X P WANG, Y ZHANG et al. Leakage region detection of gas insulated equipment by applying infrared image processing technique, 94-98(2017).
[6] Z Z TU, B LUO, Y J SHI et al. A new method for SF6 gas leakage detection, 31-34(2010).
[7] B L LIU, H C MA, X P ZHENG et al. Monitoring and detection of combustible gas leakage by using infrared imaging, 1-6(2018).
[8] Q LU, Q LI, L K HU et al. An effective low-contrast SF₆ gas leakage detection method for infrared imaging. IEEE Transactions on Instrumentation and Measurement, 70, 5009009(2021).
[9] 蔺丽华, 吴冬梅, 李杰, 等. 基于混合高斯背景模型的SF6泄漏自动检测[J]. 西北大学学报(自然科学版), 2014, 44(3): 379-382.LINL H, WUD M, LIJ, et al. Automatic SF6 leakage detection based on Gaussian mixture background model[J]. Journal of Northwest University (Natural Science Edition), 2014, 44(3): 379-382.(in Chinese)
[10] 翁静, 袁盼, 王铭赫, 等. 基于支持向量机的泄漏气体云团热成像检测方法[J]. 光学学报, 2022, 42(9): 0911002. doi: 10.3788/AOS202242.0911002WENGJ, YUANP, WANGM H, et al. Thermal imaging detection method of leak gas clouds based on support vector machine[J]. Acta Optica Sinica, 2022, 42(9): 0911002.(in Chinese). doi: 10.3788/AOS202242.0911002
[11] A BUADES, B COLL, J M MOREL. A non-local algorithm for image denoising, 60-65(2005).
[12] H Q WANG, J S SHI, H P ZHANG et al. Research on infrared sequence image denoising based on multi-frame averaging and improved bilateral filtering, 94-101(10).
[13] H T YANG, Y N TONG, Z Q CAO et al. Infrared image enhancement algorithm based on improved wavelet threshold function and weighted guided filtering. Journal of Physics: Conference Series, 2525(2023).
[14] D S LEE. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 827-832(2005).
[15] H WU, G Z LIU. A dynamic infrared object tracking algorithm by frame differencing. Infrared Physics and Technology, 127, 104384(2022).
[16] J H ZUO, X L HU, L R XU et al. CH4 gas leakage detection method for low contrast infrared images. Infrared Physics & Technology, 127, 104473(2022).
[17] D ZIMMERLE, T VAUGHN, C BELL et al. Detection limits of optical gas imaging for natural gas leak detection in realistic controlled conditions. Environmental Science & Technology, 54, 11506-11514(2020).
[18] Q CHEN, L F BAI, B M ZHANG. Real-time adaptive noise processing in low light level images, 606-609(1996).
[19] 朱文杰, 王广龙, 田杰, 等. 空时自适应混合高斯模型复杂背景运动目标检测[J]. 北京理工大学学报, 2018, 38(2): 165-172.ZHUW J, WANGG L, TIANJ, et al. Spatio-temporal adaptive mixture of Gaussians for moving objects detection in complex background scenes[J]. Transactions of Beijing Institute of Technology, 2018, 38(2): 165-172.(in Chinese)
[20] Q ZHAO, X X NIE, D LUO et al. An effective method for gas-leak area detection and gas identification with mid-infrared image. Photonics, 9, 992(2022).
[21] J C BEZDEK, R EHRLICH, W FULL. FCM: the fuzzy c-means clustering algorithm. Computers and Geosciences, 10, 191-203(1984).
[22] T LEI, X H JIA, Y N ZHANG et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Transactions on Fuzzy Systems, 26, 3027-3041(2018).
[23] O ARBELAITZ, I GURRUTXAGA, J MUGUERZA et al. An extensive comparative study of cluster validity indices. Pattern Recognition, 46, 243-256(2013).
[24] A SOBRAL, T BOUWMANS. BGS Library: a Library Framework for Algorithm's Evaluation in Foreground/Background Segmentation(2014).
[25] L MADDALENA, A PETROSINO. A self-organizing approach to background subtraction for visual surveillance applications. IEEE Transactions on Image Processing, 17, 1168-1177(2008).
[26] 王琦, 潘夏童, 邢明玮, 等. 被动式红外成像气体目标智能检测算法及量化研究进展[J]. 控制与决策, 2023, 38(8): 2265-2282.WANGQ, PANX T, XINGM W, et al. A survey of automatic gas leakage detection and quantiflcation based on passive infrared imaging[J]. Control and Decision, 2023, 38(8): 2265-2282.(in Chinese)