• Optical Instruments
  • Vol. 44, Issue 4, 1 (2022)
Tianle ZHAO and Ping LI*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering ,University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2022.004.001 Cite this Article
    Tianle ZHAO, Ping LI. The effect of data pre-processing on the localization accuracy of millimeter wave hologram object detection[J]. Optical Instruments, 2022, 44(4): 1 Copy Citation Text show less
    References

    [1] SHEEN D M, MCMAKIN D L, HALL T E. Three-dimensional millimeter - wave imaging for concealed weapon detection[J]. IEEE Transactions on Microwave Theory and Techniques, 49, 1581-1592(2001).

    [2] ZHU Y K, YANG M H, WU L, et al. Millimeter-wave holographic imaging algorithm with amplitude corrections[J]. Progress in Electromagnetics Research, 49, 33-39(2016).

    [3] FEI P, FANG W H, WEN X, et al. State of the art and future prospect of the active millimeter wave imaging technique for personnel screening[J]. Journal of Microwaves, 31, 91-96(2015).

    [4] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies f accurate object detection semantic segmentation[C]Proceedings of 2014 IEEE Conference on Computer Vision Pattern Recognition. Columbus: IEEE, 2014: 580 − 587.

    [6] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [7] SERMA P, EIGEN D, ZHANG X, et al. OverFeat: integrated recognition, localization detection using convolutional wks[J]. arXiv: 1312.6229v4, 2014.

    [8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image classification with deep convolutional neural wks[C]Proceedings of the 26th Annual Conference on Neural Infmation Processing Systems 2012. Lake Tahoe, 2012: 1106 − 1114.

    [9] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning f image recognition[C]Proceedings of 2016 IEEE Conference on Computer Vision Pattern Recognition. Las Vegas: IEEE, 2016.

    [10] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. ScaledYOLOv4: scaling cross stage partial wk[C]Proceedings of 2021 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR). Nashville: IEEE, 2021: 13024 − 13033.

    [11] DUAN K W, BAI S, XIE L X, et al. Center: keypoint triplets f object detection[C]Proceedings of 2019 IEEECVF International Conference on Computer Vision. Seoul, Kea (South): IEEE, 2019: 6568 − 6577.

    [12] SHI S S, GUO C X, JIANG L, et al. PVRCNN: pointvoxel feature set abstraction f 3D object detection[C]Proceedings of 2020 IEEECVF Conference on Computer Vision Pattern Recognition. Seattle: IEEE, 2020: 10526 − 10535.

    [16] BOTTOU L, BENGIO Y. Convergence properties of the kmeans algithms[C]Proceedings of Advances in Neural Infmation Processing Systems. Denver: MIT Press, 1995: 585 − 592.

    [17] SIMONYAN K, ZISSERMAN A. Very deep convolutional wks f largescale image recognition[C]Proceedings of the 3rd International Conference on Learning Representations. San Diego, 2014.

    Tianle ZHAO, Ping LI. The effect of data pre-processing on the localization accuracy of millimeter wave hologram object detection[J]. Optical Instruments, 2022, 44(4): 1
    Download Citation