
Search by keywords or author
Journals > > Topics > Diffraction and Gratings
Diffraction and Gratings|48 Article(s)
A broadband polarization-independent two-port beam splitter under normal incidence based on encapsulated metal-dielectric reflective grating
Zhengkun Yin, Yunkai Lu, Junjie Yu, and Changhe Zhou
An encapsulated metal-dielectric reflective grating is presented for broadband polarization-independent two-port beam splitting under normal incidence at the central wavelength of 800 nm. Different from traditional two-port grating splitters in the resonant region, this grating splitter is capable of separating light energy into ±1st orders with high efficiency in a broad waveband for both TE and TM polarizations. A unified method is proposed here for designing this grating splitter, which enables one to choose a grating structure quickly to realize an ultrabroad working waveband. The simulation results indicate that a bandwidth of 46.4 nm could be achieved for diffraction efficiency (defined as the ratio of the light energy diffracted only at the first order to the incident light energy) over 46% at the central wavelength of 800 nm. Moreover, the parameters of the grating structure can be flexibly adjusted with wavelengths using the unified method for various other applications, such as augmented reality, optical interconnections for computing, coherent beam combination, and complex vector beam shaping. An encapsulated metal-dielectric reflective grating is presented for broadband polarization-independent two-port beam splitting under normal incidence at the central wavelength of 800 nm. Different from traditional two-port grating splitters in the resonant region, this grating splitter is capable of separating light energy into ±1st orders with high efficiency in a broad waveband for both TE and TM polarizations. A unified method is proposed here for designing this grating splitter, which enables one to choose a grating structure quickly to realize an ultrabroad working waveband. The simulation results indicate that a bandwidth of 46.4 nm could be achieved for diffraction efficiency (defined as the ratio of the light energy diffracted only at the first order to the incident light energy) over 46% at the central wavelength of 800 nm. Moreover, the parameters of the grating structure can be flexibly adjusted with wavelengths using the unified method for various other applications, such as augmented reality, optical interconnections for computing, coherent beam combination, and complex vector beam shaping.
Chinese Optics Letters
- Publication Date: Jul. 10, 2020
- Vol. 18, Issue 7, 070501 (2020)
Scalable Talbot effect of periodic array objects
Rui Yang, Zhenfa Xue, Zhiyong Shi, Liqiang Zhou, and Linwei Zhu
A type of scalable self-imaging capable of variable magnification or minification of periodic objects is demonstrated in the focal plane of a lens illuminated by a point source. The theory and the experimental results show that the self-imaging phenomenon can also be realized in the focal plane of a lens regardless of whether the distances satisfy the lens formula or not. The particular property of this scalable self-imaging effect is that the images in the focal plane can be controlled with different scaling factors only when the distances between the point source and the periodic object satisfy a certain condition. This discovery should open a new field of diffraction imaging and new application opportunities in precision measurement. A type of scalable self-imaging capable of variable magnification or minification of periodic objects is demonstrated in the focal plane of a lens illuminated by a point source. The theory and the experimental results show that the self-imaging phenomenon can also be realized in the focal plane of a lens regardless of whether the distances satisfy the lens formula or not. The particular property of this scalable self-imaging effect is that the images in the focal plane can be controlled with different scaling factors only when the distances between the point source and the periodic object satisfy a certain condition. This discovery should open a new field of diffraction imaging and new application opportunities in precision measurement.
Chinese Optics Letters
- Publication Date: Mar. 10, 2020
- Vol. 18, Issue 3, 030501 (2020)
Chirped pulse amplification: review and prospective from diffractive optics [Invited]|Editors' Pick
Changhe Zhou
It is well-known that the chirped pulse amplification (CPA) technique won the award for the 2018 Nobel Prize in Physics to Mourou and Strickland. The compression and stretching using gratings is the essence of the CPA technique for amplifying femtosecond laser pulses. It seems the public is less aware that there are also other structures for compression and stretching of femtosecond laser pulses using other diffractive gratings, such as doubled-density gratings and deep-etched gratings. Therefore, from the view of diffractive optics, the CPA technique is reviewed with different approaches and experimental implementations that are not only useful for a more comprehensive retrospective overview of CPA, but also for the prospective of the CPA technique, which might lead us to new areas of picometer and femtometer optics in the future. It is well-known that the chirped pulse amplification (CPA) technique won the award for the 2018 Nobel Prize in Physics to Mourou and Strickland. The compression and stretching using gratings is the essence of the CPA technique for amplifying femtosecond laser pulses. It seems the public is less aware that there are also other structures for compression and stretching of femtosecond laser pulses using other diffractive gratings, such as doubled-density gratings and deep-etched gratings. Therefore, from the view of diffractive optics, the CPA technique is reviewed with different approaches and experimental implementations that are not only useful for a more comprehensive retrospective overview of CPA, but also for the prospective of the CPA technique, which might lead us to new areas of picometer and femtometer optics in the future.
Chinese Optics Letters
- Publication Date: Nov. 10, 2020
- Vol. 18, Issue 11, 110502 (2020)
New kind of Hermite–Gaussian-like optical vortex generated by cross phase
Chen Wang, Yuan Ren, Tong Liu, Linlin Chen, and Song Qiu
We propose a new kind of optical vortex called the Hermite–Gaussian-like optical vortex (HGOV) inspired by the cross phase (CP). Theoretically, we investigate how the CP is decoupled from the phase of a cylindrical lens. We also investigate the propagation characteristics of an HGOV, which has a Hermite–Gaussian-like intensity distribution but still retains the orbital angular momentum. Furthermore, we derive the Fresnel diffraction integral of an HGOV and study the purity at infinity. Besides, we show a novel function of the self-measurement of the HGOV. Finally, we show that we can change the relative positions of singularities and the direction of an HGOV precisely, which facilitates applications in optical micro-manipulation. We propose a new kind of optical vortex called the Hermite–Gaussian-like optical vortex (HGOV) inspired by the cross phase (CP). Theoretically, we investigate how the CP is decoupled from the phase of a cylindrical lens. We also investigate the propagation characteristics of an HGOV, which has a Hermite–Gaussian-like intensity distribution but still retains the orbital angular momentum. Furthermore, we derive the Fresnel diffraction integral of an HGOV and study the purity at infinity. Besides, we show a novel function of the self-measurement of the HGOV. Finally, we show that we can change the relative positions of singularities and the direction of an HGOV precisely, which facilitates applications in optical micro-manipulation.
Chinese Optics Letters
- Publication Date: Oct. 10, 2020
- Vol. 18, Issue 10, 100501 (2020)
Multi-band imaging and focusing of photonic crystal flat lens with scatterer-size gradient
Yuan Cen, Jianlan Xie, and Jianjun Liu
In this Letter, a photonic crystal (PC) flat lens with a scatterer-size gradient is proposed, which simultaneously achieves imaging of the point source and sub-wavelength focusing of the plane wave in the first, second, and fifth bands. The imaging of the point source breaks through the diffraction limit in the second and fifth bands. The PC flat lens with the scatterer-size gradient is expected to be used in a new multifunctional optical imaging and focusing device, which improves the application potential of a PC flat lens. In this Letter, a photonic crystal (PC) flat lens with a scatterer-size gradient is proposed, which simultaneously achieves imaging of the point source and sub-wavelength focusing of the plane wave in the first, second, and fifth bands. The imaging of the point source breaks through the diffraction limit in the second and fifth bands. The PC flat lens with the scatterer-size gradient is expected to be used in a new multifunctional optical imaging and focusing device, which improves the application potential of a PC flat lens.
Chinese Optics Letters
- Publication Date: Aug. 10, 2019
- Vol. 17, Issue 8, 080501 (2019)
Detour phase Talbot array illuminator
Zhigang Li, Rui Yang, Meiyu Sun, Jing Han, Dengying Zhang, Jiannong Chen, Dawei Zhang, and Linwei Zhu
In this Letter, we propose a simple and effective approach for transforming a conventional Talbot array illuminator (TAI) with multilevel phase steps into a binary-phase TAI (BP-TAI) through detour phase encoding. The BP-TAI is a binary (0 π) phase-only diffractive optical element, which can be utilized to generate a large-scale focal spots array with a high compression ratio. As an example, we design a square BP-TAI with the fraction parameter β = 15 for achieving a square multifocal lattice with a high compression ratio β2. Theoretical analysis and experimental results demonstrate that the detour phase encoding is efficient for designing the BP-TAI, especially with the high compression ratio. Such results may be exploited in practical large-scale optical trapping and X-ray imaging. In this Letter, we propose a simple and effective approach for transforming a conventional Talbot array illuminator (TAI) with multilevel phase steps into a binary-phase TAI (BP-TAI) through detour phase encoding. The BP-TAI is a binary (0 π) phase-only diffractive optical element, which can be utilized to generate a large-scale focal spots array with a high compression ratio. As an example, we design a square BP-TAI with the fraction parameter β = 15 for achieving a square multifocal lattice with a high compression ratio β2. Theoretical analysis and experimental results demonstrate that the detour phase encoding is efficient for designing the BP-TAI, especially with the high compression ratio. Such results may be exploited in practical large-scale optical trapping and X-ray imaging.
Chinese Optics Letters
- Publication Date: Jul. 10, 2019
- Vol. 17, Issue 7, 070501 (2019)
Diffraction of relativistic vortex harmonics with fractional average orbital angular momentum
Shasha Li, Baifei Shen, Wenpeng Wang, Zhigang Bu, Hao Zhang, Hui Zhang, and Shuhua Zhai
Vortex harmonics with fractional average orbital angular momentum are generated when a relativistic fractional vortex beam is incident on and reflected from an over-dense plane plasma target. A two-step model is presented to explain the far-field patterns of the harmonics. In the first step, a fundamental spot-shaped hole is produced during the hole-boring stage, and harmonics are generated simultaneously. In the second step, different order harmonics are diffracted by the hole and propagate to the far field. This process can be accurately described by the Fraunhofer diffraction theory. This work facilitates a basic recognition of fractional vortex beams. Vortex harmonics with fractional average orbital angular momentum are generated when a relativistic fractional vortex beam is incident on and reflected from an over-dense plane plasma target. A two-step model is presented to explain the far-field patterns of the harmonics. In the first step, a fundamental spot-shaped hole is produced during the hole-boring stage, and harmonics are generated simultaneously. In the second step, different order harmonics are diffracted by the hole and propagate to the far field. This process can be accurately described by the Fraunhofer diffraction theory. This work facilitates a basic recognition of fractional vortex beams.
Chinese Optics Letters
- Publication Date: May. 10, 2019
- Vol. 17, Issue 5, 050501 (2019)
Angular filtering by volume Bragg grating in photothermorefractive glass for nanosecond laser pulse
Baoxing Xiong, Fan Gao, Xiang Zhang, and Xiao Yuan
The two-dimensional angular filter based on volume Bragg gratings in photothermorefractive glass for a nanosecond (ns) laser pulse is demonstrated. The experimental results show that the near-field beam quality of the laser pulse was effectively improved. The near-field modulation and contrast ratio were improved by 1.75 and 4.48 times, respectively. The power spectral density curves showed that the spatial frequencies more than 0.9 mm 1 in the x direction and 1.2 mm 1 in the y direction were effectively suppressed. The two-dimensional angular filter based on volume Bragg gratings in photothermorefractive glass for a nanosecond (ns) laser pulse is demonstrated. The experimental results show that the near-field beam quality of the laser pulse was effectively improved. The near-field modulation and contrast ratio were improved by 1.75 and 4.48 times, respectively. The power spectral density curves showed that the spatial frequencies more than 0.9 mm 1 in the x direction and 1.2 mm 1 in the y direction were effectively suppressed.
Chinese Optics Letters
- Publication Date: Apr. 10, 2019
- Vol. 17, Issue 4, 040501 (2019)
Grating coupler efficiency enhancement by double layer interference
Huashan Yang, Fuling Zhang, Lemeng Leng, Zhaobang Zeng, Yue Shao, Hui Zhang, Nan Yang, and Xiangning Chen
A simple method for improving grating couplers’ coupling efficiency without any extra microfabrication processes is proposed. This method can improve the coupling efficiency with 1.69 dB by utilizing the combined interference in the cladding layer and air gap between the cladding surface and the paralleled angle polished fiber facet. The proposed method can be applied to various kinds of on-chip grating couplers. Back reflection, 1 dB bandwidth, and fiber alignment tolerance have also been improved at the same time. A simple method for improving grating couplers’ coupling efficiency without any extra microfabrication processes is proposed. This method can improve the coupling efficiency with 1.69 dB by utilizing the combined interference in the cladding layer and air gap between the cladding surface and the paralleled angle polished fiber facet. The proposed method can be applied to various kinds of on-chip grating couplers. Back reflection, 1 dB bandwidth, and fiber alignment tolerance have also been improved at the same time.
Chinese Optics Letters
- Publication Date: Mar. 10, 2019
- Vol. 17, Issue 3, 030501 (2019)
Perfect absorption in a monolayer graphene at the near-infrared using a compound waveguide grating by robust critical coupling
Jinhua Hu, Jia Fu, Xiuhong Liu, Danping Ren, Jijun Zhao, and Yongqing Huang
We present a perfect graphene absorber with a compound waveguide grating at the near-infrared. The analytical approach is mainly based on the coupled leaky mode theory, which turns the design of the absorber to finding out the required leaky modes supported by the grating structure. Perfect absorption occurs only when the radiative loss of the leaky mode matches the intrinsic absorption loss, which is also named the critical coupling condition. Furthermore, we also demonstrate that the critical coupling of the system can be robustly controlled, and the perfect absorption wavelength can be easily tuned by adjusting the parameters of the compound waveguide grating. We present a perfect graphene absorber with a compound waveguide grating at the near-infrared. The analytical approach is mainly based on the coupled leaky mode theory, which turns the design of the absorber to finding out the required leaky modes supported by the grating structure. Perfect absorption occurs only when the radiative loss of the leaky mode matches the intrinsic absorption loss, which is also named the critical coupling condition. Furthermore, we also demonstrate that the critical coupling of the system can be robustly controlled, and the perfect absorption wavelength can be easily tuned by adjusting the parameters of the compound waveguide grating.
Chinese Optics Letters
- Publication Date: Jan. 10, 2019
- Vol. 17, Issue 1, 010501 (2019)
Topics