
Search by keywords or author
Journals > > Topics > Integrated Optics Devices
Integrated Optics Devices|2 Article(s)
Two-groove narrowband transmission filter integrated into a slab waveguide
Leonid L. Doskolovich, Evgeni A. Bezus, and Dmitry A. Bykov
We propose a simple integrated narrowband filter consisting of two grooves on the surface of a slab waveguide. Spectral filtering is performed in transmission at oblique incidence due to excitation of an eigenmode of the structure localized at a ridge cavity between the grooves. For the considered parameters, zero reflectance and unity transmittance are achieved at resonant conditions. The width and location of the transmittance peak can be controlled by changing the widths of the grooves and of the ridge, respectively. The proposed filter may find application in waveguide-integrated spectrometers. We propose a simple integrated narrowband filter consisting of two grooves on the surface of a slab waveguide. Spectral filtering is performed in transmission at oblique incidence due to excitation of an eigenmode of the structure localized at a ridge cavity between the grooves. For the considered parameters, zero reflectance and unity transmittance are achieved at resonant conditions. The width and location of the transmittance peak can be controlled by changing the widths of the grooves and of the ridge, respectively. The proposed filter may find application in waveguide-integrated spectrometers.
Photonics Research
- Publication Date: Dec. 22, 2017
- Vol. 6, Issue 1, 01000061 (2018)
Mode selection and dispersion engineering in Bragg-like slot photonic crystal waveguides for hybrid light–matter interactions
Samuel Serna, Weiwei Zhang, Thi Hong Cam Hoang, Carlos Alonso-Ramos, Delphine Marris-Morini, Laurent Vivien, and Eric Cassan
We introduce a family of slot photonic crystal waveguides (SPhCWs) for the hybrid integration of low-index active materials in silicon photonics with energy-confinement factors of ~30% in low-index regions. The proposed approach, which is based on a periodic indentation of the etched slot in the middle of the SPhCW, makes it possible to reconcile a simultaneously narrow and wide slot for exploiting the two modes of even symmetry of a SPhCW. The resulting mode-selection mechanism allows a flexible choice of the modes to be used. Furthermore, the proposed structure offers tremendous flexibility for adjusting the dispersive properties of the slot-confined modes, in particular of their slow-light effects. Flat band slow light in a bandwidth of about 60 nm with a group velocity dispersion factor |β2| below 1 ps2/mm is numerically demonstrated by this approach, corresponding to a normalized delay bandwidth product of around 0.4. These results, obtained from hollow-core periodic waveguides that are directly designed in view of hybrid integration of active materials in mechanically robust structures (not based on free-standing membranes) could pave the way for the realization of on-chip slow-light bio-sensing, active hybrid-silicon optoelectronic devices, or all-optical hybrid-silicon nonlinear functionalities. We introduce a family of slot photonic crystal waveguides (SPhCWs) for the hybrid integration of low-index active materials in silicon photonics with energy-confinement factors of ~30% in low-index regions. The proposed approach, which is based on a periodic indentation of the etched slot in the middle of the SPhCW, makes it possible to reconcile a simultaneously narrow and wide slot for exploiting the two modes of even symmetry of a SPhCW. The resulting mode-selection mechanism allows a flexible choice of the modes to be used. Furthermore, the proposed structure offers tremendous flexibility for adjusting the dispersive properties of the slot-confined modes, in particular of their slow-light effects. Flat band slow light in a bandwidth of about 60 nm with a group velocity dispersion factor |β2| below 1 ps2/mm is numerically demonstrated by this approach, corresponding to a normalized delay bandwidth product of around 0.4. These results, obtained from hollow-core periodic waveguides that are directly designed in view of hybrid integration of active materials in mechanically robust structures (not based on free-standing membranes) could pave the way for the realization of on-chip slow-light bio-sensing, active hybrid-silicon optoelectronic devices, or all-optical hybrid-silicon nonlinear functionalities.
Photonics Research
- Publication Date: Dec. 22, 2017
- Vol. 6, Issue 1, 01000054 (2018)
Topics